Redis是一个开源的内存数据库,它提供了丰富的特性,并且可以以高性能的方式处理数据。Redis锁是一种特殊的命令,用于在多个进程之间协调某些操作。它可以很好地解决超时间的问题。

Redis锁对于超时机制来说,是十分重要的,当应用程序可能会被短暂停止时,就需要一种机制来控制多个进程之间的访问顺序和同步信息。它还可以帮助系统在故障恢复的情况下,正确地重置和释放锁定的资源。
Redis锁可以有效地解决超时问题。下面我们来看一个示例:
假设系统中有两个进程A和B,他们都在同一个时间里请求 Redis 锁,系统设置了10秒的超时时间,并且客户A锁在尝试锁定资源之前发生了延迟,为了避免进程B超时等待,当进程A完成请求后,系统将调度整个流程,并在10秒内发出一个“释放锁”信号,使得进程B可以继续处理请求。
实现使用Redis锁的代码如下:
using StackeExchange.Redis;//创建Redis连接ConnectionMultiplexer redis = ConnectionMultiplexer.Connect("localhost");//获取 Redis 锁string lockKey = "my_lock";TimeSpan lockTimeout = TimeSpan.fromSeconds(10);RedisValue token = Environment.MachineName;//获取锁var db = redis.GetDatabase();bool acquired = db.LockTake(lockKey, token, lockTimeout);//如果获取成功,就处理关键流程if (acquired) {try{//处理关键流程}finally{//释放锁db.LockRelease(lockKey, token);}}else{//没有获取到锁,可以抛出异常throw new Exception("Unable to acquire lock");}
Redis锁可以很好地解决超时问题,并且提供了很多灵活的实现。使用 Redis 锁的优势在于它可以确保多个进程之间的顺序访问,通过锁的释放,可以恢复系统的正常运行。
香港服务器首选树叶云,2H2G首月10元开通。树叶云(www.IDC.Net)提供简单好用,价格厚道的香港/美国云 服务器 和独立服务器。IDC+ISP+ICP资质。ARIN和APNIC会员。成熟技术团队15年行业经验。
memcached和redis的区别
medis与Memcached的区别传统MySQL+ Memcached架构遇到的问题 实际MySQL是适合进行海量数据存储的,通过Memcached将热点数据加载到cache,加速访问,很多公司都曾经使用过这样的架构,但随着业务数据量的不断增加,和访问量的持续增长,我们遇到了很多问题: 需要不断进行拆库拆表,Memcached也需不断跟着扩容,扩容和维护工作占据大量开发时间。 与MySQL数据库数据一致性问题。 数据命中率低或down机,大量访问直接穿透到DB,MySQL无法支撑。 4.跨机房cache同步问题。 众多NoSQL百花齐放,如何选择 最近几年,业界不断涌现出很多各种各样的NoSQL产品,那么如何才能正确地使用好这些产品,最大化地发挥其长处,是我们需要深入研究和思考的问题,实际归根结底最重要的是了解这些产品的定位,并且了解到每款产品的tradeoffs,在实际应用中做到扬长避短,总体上这些NoSQL主要用于解决以下几种问题 1.少量数据存储,高速读写访问。 此类产品通过数据全部in-momery 的方式来保证高速访问,同时提供数据落地的功能,实际这正是Redis最主要的适用场景。 2.海量数据存储,分布式系统支持,数据一致性保证,方便的集群节点添加/删除。 3.这方面最具代表性的是dynamo和bigtable 2篇论文所阐述的思路。 前者是一个完全无中心的设计,节点之间通过gossip方式传递集群信息,数据保证最终一致性,后者是一个中心化的方案设计,通过类似一个分布式锁服务来保证强一致性,数据写入先写内存和redo log,然后定期compat归并到磁盘上,将随机写优化为顺序写,提高写入性能。 free,auto-sharding等。 比如目前常见的一些文档数据库都是支持schema-free的,直接存储json格式数据,并且支持auto-sharding等功能,比如mongodb。 面对这些不同类型的NoSQL产品,我们需要根据我们的业务场景选择最合适的产品。 Redis适用场景,如何正确的使用 前面已经分析过,Redis最适合所有数据in-momory的场景,虽然Redis也提供持久化功能,但实际更多的是一个disk-backed的功能,跟传统意义上的持久化有比较大的差别,那么可能大家就会有疑问,似乎Redis更像一个加强版的Memcached,那么何时使用Memcached,何时使用Redis呢?如果简单地比较Redis与Memcached的区别,大多数都会得到以下观点: 1Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,zset,hash等数据结构的存储。 2Redis支持数据的备份,即master-slave模式的数据备份。 3Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。 抛开这些,可以深入到Redis内部构造去观察更加本质的区别,理解Redis的设计。 在Redis中,并不是所有的数据都一直存储在内存中的。 这是和Memcached相比一个最大的区别。 Redis只会缓存所有的 key的信息,如果Redis发现内存的使用量超过了某一个阀值,将触发swap的操作,Redis根据“swappability = age*log(size_in_memory)”计 算出哪些key对应的value需要swap到磁盘。 然后再将这些key对应的value持久化到磁盘中,同时在内存中清除。 这种特性使得Redis可以 保持超过其机器本身内存大小的数据。 当然,机器本身的内存必须要能够保持所有的key,毕竟这些数据是不会进行swap操作的。 同时由于Redis将内存 中的数据swap到磁盘中的时候,提供服务的主线程和进行swap操作的子线程会共享这部分内存,所以如果更新需要swap的数据,Redis将阻塞这个 操作,直到子线程完成swap操作后才可以进行修改。 使用Redis特有内存模型前后的情况对比: VM off: 300k keys, 4096 bytes values: 1.3G used VM on:300k keys, 4096 bytes values: 73M used VM off: 1 million keys, 256 bytes values: 430.12M used VM on:1 million keys, 256 bytes values: 160.09M used VM on:1 million keys, values as large as you want, still: 160.09M used当 从Redis中读取数据的时候,如果读取的key对应的value不在内存中,那么Redis就需要从swap文件中加载相应数据,然后再返回给请求方。 这里就存在一个I/O线程池的问题。 在默认的情况下,Redis会出现阻塞,即完成所有的swap文件加载后才会相应。 这种策略在客户端的数量较小,进行 批量操作的时候比较合适。 但是如果将Redis应用在一个大型的网站应用程序中,这显然是无法满足大并发的情况的。 所以Redis运行我们设置I/O线程 池的大小,对需要从swap文件中加载相应数据的读取请求进行并发操作,减少阻塞的时间。 如果希望在海量数据的环境中使用好Redis,我相信理解Redis的内存设计和阻塞的情况是不可缺少的。
手机人脸识别不能解锁
手机人脸识别不能解锁,很可能是你当前的光线不太好。 或者是我像头存在着一定的问题,如果实在打不开,可以选择其他方式,比如密码。
活锁和死锁是怎么回事?
一、活锁如果事务T1封锁了数据R,事务T2又请求封锁R,于是T2等待。 T3也请求封锁R,当T1释放了R上的封锁之后系统首先批准了T3的请求,T2仍然等待。 然后T4又请求封锁R,当T3释放了R上的封锁之后系统又批准了T4的请求,...,T2有可能永远等待,这就是活锁的情形,如图8.4(a)所示。 避免活锁的简单方法是采用先来先服务的策略。 二、死锁如果事务T1封锁了数据R1,T2封锁了数据R2,然后T1又请求封锁R2,因T2已封锁了R2,于是T1等待T2释放R2上的锁。 接着T2又申请封锁R1,因T1已封锁了R1,T2也只能等待T1释放R1上的锁。 这样就出现了T1在等待T2,而T2又在等待T1的局面,T1和T2两个事务永远不能结束,形成死锁。 1. 死锁的预防在数据库中,产生死锁的原因是两个或多个事务都已封锁了一些数据对象,然后又都请求对已为其他事务封锁的数据对象加锁,从而出现死等待。 防止死锁的发生其实就是要破坏产生死锁的条件。 预防死锁通常有两种方法:① 一次封锁法一次封锁法要求每个事务必须一次将所有要使用的数据全部加锁,否则就不能继续执行。 一次封锁法虽然可以有效地防止死锁的发生,但也存在问题,一次就将以后要用到的全部数据加锁,势必扩大了封锁的范围,从而降低了系统的并发度。 ② 顺序封锁法顺序封锁法是预先对数据对象规定一个封锁顺序,所有事务都按这个顺序实行封锁。 顺序封锁法可以有效地防止死锁,但也同样存在问题。 事务的封锁请求可以随着事务的执行而动态地决定,很难事先确定每一个事务要封锁哪些对象,因此也就很难按规定的顺序去施加封锁。 可见,在操作系统中广为采用的预防死锁的策略并不很适合数据库的特点,因此DBMS在解决死锁的问题上普遍采用的是诊断并解除死锁的方法。 2. 死锁的诊断与解除① 超时法如果一个事务的等待时间超过了规定的时限,就认为发生了死锁。 超时法实现简单,但其不足也很明显。 一是有可能误判死锁,事务因为其他原因使等待时间超过时限,系统会误认为发生了死锁。 二是时限若设置得太长,死锁发生后不能及时发现。 ② 等待图法事务等待图是一个有向图G=(T,U)。 T为结点的集合,每个结点表示正运行的事务;U为边的集合,每条边表示事务等待的情况。 若T1等待T2,则T1、T2之间划一条有向边,从T1指向T2。 事务等待图动态地反映了所有事务的等待情况。 并发控制子系统周期性地(比如每隔1分钟)检测事务等待图,如果发现图中存在回路,则表示系统中出现了死锁。 DBMS的并发控制子系统一旦检测到系统中存在死锁,就要设法解除。 通常采用的方法是选择一个处理死锁代价最小的事务,将其撤消,释放此事务持有的所有的锁,使其它事务得以继续运行下去。 当然,对撤消的事务所执行的数据修改操作必须加以恢复。
发表评论