在计算机网络编程的世界中,socket是一种非常重要的网络编程接口,经常用于实现数据的传输、处理和控制等操作。特别是对于Linux系统而言,它的socket接口非常强大,可以帮助程序员轻松实现各种网络传输控制。那么,本文就来探讨一下在Linux系统下如何进行socket设置,以及如何实现网络传输的控制。
一、socket设置
1、socket函数
socket函数是Linux下的一个系统调用,用于创建一个新的socket对象,可以理解为它是socket操作的起点。其函数原型如下:
int socket(int domn, int type, int protocol);
其中,domn参数表示协议域,type参数表示套接字类型,protocol参数表示使用的协议类型。例如,如果需要创建一个TCP套接字,可以使用如下的代码:
int sockfd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
其中,AF_INET表示使用IPv4协议域,SOCK_STREAM表示创建TCP套接字,IPPROTO_TCP表示使用TCP协议。
2、bind函数
bind函数用于将socket对象绑定到一个特定的本地地址上。其函数原型如下:
int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen);
其中,sockfd参数表示socket对象的描述符,addr参数表示本地地址信息(结构体类型为sockaddr),addrlen参数表示addr结构体的长度。例如,将上面创建的sockfd套接字绑定到本地的8888端口上,可以使用如下代码:
struct sockaddr_in local_addr;
local_addr.sin_family = AF_INET;
local_addr.sin_port = htons(8888);
local_addr.sin_addr.s_addr = htonl(INADDR_ANY);
int ret = bind(sockfd, (struct sockaddr*)&local_addr, sizeof(local_addr));
其中,htons和htonl函数用于将主机字节序转换为网络字节序,INADDR_ANY表示本机任意IP地址。
3、listen函数
listen函数用于将socket对象转换为监听状态,准备接受客户端的连接请求。其函数原型如下:
int listen(int sockfd, int backlog);
其中,sockfd参数表示要监听的socket对象的描述符,backlog参数表示监听队列的更大长度。例如,将前面绑定到8888端口的sockfd套接字设置为监听状态,可以使用如下代码:
int ret = listen(sockfd, SOMAXCONN);
其中,SOMAXCONN是一个常量,表示更大的监听队列长度。
4、accept函数
accept函数用于接受客户端的连接请求,并创建一个新的socket对象与客户端进行数据通信。其函数原型如下:
int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);
其中,sockfd参数表示 服务器 端的socket对象的描述符,addr参数表示客户端的地址信息(结构体类型为sockaddr),addrlen参数表示addr结构体的长度。具体实现代码如下:
struct sockaddr_in client_addr;
socklen_t addr_len = sizeof(client_addr);
int new_sockfd = accept(sockfd, (struct sockaddr*)&client_addr, &addr_len);
二、网络传输控制
1、基本控制技巧
在进行网络传输时,应该对传输数据的流量进行合理控制,否则很容易出现数据拥塞或者丢失等问题。常用的传输控制技巧包括以下几种:
(1)设置SO_RCVBUF和SO_SNDBUF选项:这两个选项分别用于设置接收缓冲区和发送缓冲区的大小,可以通过调整缓冲区的大小来实现数据传输的控制。
(2)设置TCP_NODELAY选项:该选项用于禁止Nagle算法,在发送小数据包时可以显著减少网络延迟。
(3)设置TCP_CORK和TCP_NOPUSH选项:这两个选项用于控制TCP发送缓冲区的填充和发送时机,可以根据实际需要调整参数。
2、IO复用技术
在进行网络编程时,经常需要同时监听多个socket对象的数据传输,此时可以使用IO 复用技术来优化程序的性能。常用的IO复用模型包括select模型、poll模型和epoll模型。
(1)select模型:select模型最早出现,它的可移植性比较好,适合较小规模的网络应用。
(2)poll模型:poll模型是select的改进版,解决了select的一些缺陷,但开销较大,适合小型网络。
(3)epoll模型:epoll模型是Linux下的一种高性能的IO复用模型,具有高效和扩展性好的特点,适合大型网络应用。
三、
在Linux系统下进行网络编程,socket是必不可少的重要接口,使用socket可以轻松实现网络传输的控制。本文主要介绍了Linux socket设置和网络传输控制的相关技巧,包括socket函数、bind函数、listen函数、accept函数、传输控制技巧和IO复用技术等方面,供读者参考。
相关问题拓展阅读:
请问linux怎么增大socket连接上限?
1、修改用户进程可打开文件数限制
在Linux平台上,无论编写客户端程序还是服务端程序,在进行高并发TCP连慎游接处理时,
更高的并发数量都要受到系统对用户单一进程同时可打开文件数量的限制(这是因为系统
为每个TCP连接都要创建一个socket句柄,每个socket句柄同时也是一个文件句柄)。

可使用ulimit命令查看系统允许当前用户进程打开的文件数限制:
这表示当前用户的每个进程最多允许同时打开1024个文件,这1024个文件中还得除去
每个进程必然打开的标准输入,标准输出,标准错误,服务器监听 socket,
进程间通讯的unix域socket等文件,那么剩下的可用于客户端socket连接的文件数就
只有大概=1014个左右。也就是说缺省情况下,基于Linux的通讯程序最多允许
同时1014个TCP并发连接。
对于想支持更高数量的TCP并发连接的通讯处理程序,就必须修改Linux对当前用户的
进程同时打开的文件数量的软限制(soft limit)和硬限制(hardlimit)。其中软限制
是指Linux在当前系统能够承受的范围内进一步限制用户同时打开的文件数;硬限制
则是根据系统硬件资源状况(主要是系统内存)计算出来的系统最多可同时打开的文件数量。
通常软限制小于或等于硬限制。
修改上述限制的最简单的办法就是使用ulimit命令:
上述命令中,在中指定要设置的单一进程允许打开的更大文件数。如果系统回显
类似于“Operation notpermitted”之类的话,说明上述限制修改失败,实际上是
因为在中指定的数值超过了Linux系统对该用户打开文件数的软限制或硬限制。
因此,就需要修改Linux系统对用户的关于打开文件数的软限制和硬限制。
之一步,修改/etc/security/limits.conf文件,在文件中添加如下行:
speng soft nofile 10240
speng hard nofile 10240
其中speng指定了要修改哪个用户的打开文件数限制,可用’*’号表示修改所有用户的限制;
soft或hard指定要修改软限制还是硬限制;10240则指定了想要修改的新的限制值,
即更大打开文件数(请注意软限制值要小于或等于硬限制)。修改完后保存文件。
第二步,修改/etc/pam.d/login文件,在文件中添加如下行:
session required /lib/security/pam_limits.so
这是告诉Linux在用户完成系统登录后,应该调用pam_limits.so模块来设置系统对
该用户可使用的各种资源数量的更大限制(包括用户可打开的更大文件数限制),
而pam_limits.so模块就会从/etc/security/limits.conf文件中读取配置来设置这些限制值。
修改完后保存此文件。
第三步,查看Linux系统级的更大打开文件数限制,使用如下命令:
$ cat /proc/sys/fs/file-max
这表明这台Linux系统最多允许同时打开(即包含所有用户打开文件数总和)12158个文件,
是Linux系统级硬限制,所有用户级的打开文件数限制都不应超过这个数值。通常这个系统级
硬限制是Linux系统在启动时根据系统硬件资源状况计算出来的更佳的更大同时打开文件数限制,
如果没有特殊需要,不应该修改此限制,除非想为用户级打开文件数限制设置超过此限制的值。
修改此硬限制的方法是修改/etc/rc.local脚本,在脚本中添加如下行:
echo> /proc/sys/fs/file-max
这是让Linux在启动完成后强行将系统级打开文件数硬限制设置为22158。修改完后保存此文件。
完成上述步骤后重启系统,一般情况下就可以明孝巧将Linux系统对指定用户的单一进程允许同时
打开的更大文件数限制设为指定的数值。如果重启后用 ulimit-n命令查看用户可打开文件数限制
仍然低于上述步骤中设置的更大值,这可激键能是因为在用户登录脚本/etc/profile中使用ulimit -n命令
已经将用户可同时打开的文件数做了限制。由于通过ulimit-n修改系统对用户可同时打开文件的
更大数限制时,新修改的值只能小于或等于上次 ulimit-n设置的值,因此想用此命令增大这个
限制值是不可能的。
所以,如果有上述问题存在,就只能去打开/etc/profile脚本文件,
在文件中查找是否使用了ulimit-n限制了用户可同时打开的更大文件数量,如果找到,
则删除这行命令,或者将其设置的值改为合适的值,然后保存文件,用户退出并重新登录系统即可。
通过上述步骤,就为支持高并发TCP连接处理的通讯处理程序解除关于打开文件数量方面的系统限制。
2、修改网络内核对TCP连接的有关限制
在Linux上编写支持高并发TCP连接的客户端通讯处理程序时,有时会发现尽管已经解除了系统
对用户同时打开文件数的限制,但仍会出现并发TCP连接数增加到一定数量时,再也无法成功
建立新的TCP连接的现象。出现这种现在的原因有多种。
之一种原因可能是因为Linux网络内核对本地
端口号
范围有限制。此时,进一步分析为什么无法
建立TCP连接,会发现问题出在connect()调用返回失败,查看系统错误提示消息是“Can’t assign requestedaddress”。同时,如果在此时用tcpdump工具监视网络,会发现根本没有TCP连接时客户端
发SYN包的网络流量。这些情况说明问题在于本地Linux系统内核中有限制。
其实,问题的根本原因
在于
Linux内核
的TCP/IP协议实现模块对系统中所有的客户端TCP连接对应的本地端口号的范围
进行了限制(例如,内核限制本地端口号的范围为1024~32768之间)。当系统中某一时刻同时
存在太多的TCP客户端连接时,由于每个TCP客户端连接都要占用一个唯一的本地端口号
(此端口号在系统的本地端口号范围限制中),如果现有的TCP客户端连接已将所有的本地端口号占满,
则此时就无法为新的TCP客户端连接分配一个本地端口号了,因此系统会在这种情况下在connect()
调用中返回失败,并将错误提示消息设为“Can’t assignrequested address”。
有关这些控制
逻辑可以查看Linux内核源代码,以linux2.6内核为例,可以查看tcp_ipv4.c文件中如下函数:
static int tcp_v4_hash_connect(struct sock *sk)
请注意上述函数中对变量sysctl_local_port_range的访问控制。变量sysctl_local_port_range
的初始化则是在tcp.c文件中的如下函数中设置:
void __init tcp_init(void)
内核编译时默认设置的本地端口号范围可能太小,因此需要修改此本地端口范围限制。
之一步,修改/etc/sysctl.conf文件,在文件中添加如下行:
net.ipv4.ip_local_port_range =
这表明将系统对本地端口范围限制设置为1024~65000之间。请注意,本地端口范围的最小值
必须大于或等于1024;而端口范围的更大值则应小于或等于65535。修改完后保存此文件。
第二步,执行sysctl命令:
如果系统没有错误提示,就表明新的本地端口范围设置成功。如果按上述端口范围进行设置,
则理论上单独一个进程最多可以同时建立60000多个TCP客户端连接。
第二种无法建立TCP连接的原因可能是因为Linux网络内核的IP_TABLE防火墙对更大跟踪的TCP
连接数有限制。此时程序会表现为在 connect()调用中阻塞,如同死机,如果用tcpdump工具监视网络,
也会发现根本没有TCP连接时客户端发SYN包的网络流量。由于 IP_TABLE防火墙在内核中会对
每个TCP连接的状态进行跟踪,跟踪信息将会放在位于内核内存中的conntrackdatabase中,
这个数据库的大小有限,当系统中存在过多的TCP连接时,数据库容量不足,IP_TABLE无法为
新的TCP连接建立跟踪信息,于是表现为在connect()调用中阻塞。此时就必须修改内核对更大跟踪
的TCP连接数的限制,方法同修改内核对本地端口号范围的限制是类似的:
之一步,修改/etc/sysctl.conf文件,在文件中添加如下行:
net.ipv4.ip_conntrack_max = 10240
这表明将系统对更大跟踪的TCP连接数限制设置为10240。请注意,此限制值要尽量小,
以节省对内核内存的占用。
第二步,执行sysctl命令:
如果系统没有错误提示,就表明系统对新的更大跟踪的TCP连接数限制修改成功。
如果按上述参数进行设置,则理论上单独一个进程最多可以同时建立10000多个TCP客户端连接。
3、使用支持高并发网络I/O的编程技术
在Linux上编写高并发TCP连接
应用程序
时,必须使用合适的网络I/O技术和I/O事件分派机制。
可用的I/O技术有同步I/O,非阻塞式同步I/O(也称反应式I/O),以及异步I/O。在高TCP并发的情形下,
如果使用同步I/O,这会严重阻塞程序的运转,除非为每个TCP连接的I/O创建一个线程。
但是,过多的线程又会因系统对线程的调度造成巨大开销。因此,在高TCP并发的情形下使用
同步 I/O是不可取的,这时可以考虑使用非阻塞式同步I/O或异步I/O。非阻塞式同步I/O的技术包括使用select(),poll(),epoll等机制。异步I/O的技术就是使用AIO。
从I/O事件分派机制来看,使用select()是不合适的,因为它所支持的并发连接数有限(通常在1024个以内)。
如果考虑性能,poll()也是不合适的,尽管它可以支持的较高的TCP并发数,但是由于其采用
“轮询”机制,当并发数较高时,其运行效率相当低,并可能存在I/O事件分派不均,导致部分TCP
连接上的I/O出现“饥饿”现象。而如果使用epoll或AIO,则没有上述问题(早期Linux内核的AIO技术
实现是通过在内核中为每个 I/O请求创建一个线程来实现的,这种实现机制在高并发TCP连接的情形下
使用其实也有严重的性能问题。但在最新的Linux内核中,AIO的实现已经得到改进)。
综上所述,在开发支持高并发TCP连接的Linux应用程序时,应尽量使用epoll或AIO技术来实现并发的
TCP连接上的I/O控制,这将为提升程序对高并发TCP连接的支持提供有效的I/O保证。
内核参数sysctl.conf的优化
/etc/sysctl.conf 是用来控制linux网络的配置文件,对于依赖网络的程序(如web服务器和cache服务器)
非常重要,RHEL默认提供的更好调整。
推荐配置(把原/etc/sysctl.conf内容清掉,把下面内容复制进去):
net.ipv4.ip_local_port_range =
net.core.rmem_max=
net.core.wmem_max=
net.ipv4.tcp_rmem=77216
net.ipv4.tcp_wmem=77216
net.ipv4.tcp_fin_timeout = 10
net.ipv4.tcp_tw_recycle = 1
net.ipv4.tcp_timestamps = 0
net.ipv4.tcp_window_scaling = 0
net.ipv4.tcp_sack = 0
net.core.netdev_max_backlog = 30000
net.ipv4.tcp_no_metrics_save=1
net.core.somaxconn =
net.ipv4.tcp_syncookies = 0
net.ipv4.tcp_max_orphans =
net.ipv4.tcp_max_syn_backlog =
net.ipv4.tcp_synack_retries = 2
net.ipv4.tcp_syn_retries = 2
这个配置参考于cache服务器varnish的推荐配置和SunOne 服务器系统优化的推荐配置。
varnish调优推荐配置的地址为:
不过varnish推荐的配置是有问题的,实际运行表明“net.ipv4.tcp_fin_timeout = 3”的配置
打不开,重启浏览器后正常。可能是国外的网速快吧,我们国情决定需要
调整“net.ipv4.tcp_fin_timeout = 10”,在10s的情况下,一切正常(实际运行结论)。
修改完毕后,执行:
/in/sysctl -p /etc/sysctl.conf
/in/sysctl -w net.ipv4.route.flush=1
命令生效。为了保险起见,也可以reboot系统。
调整文件数:
linux系统优化完网络必须调高系统允许打开的文件数才能支持大的并发,默认1024是远远不够的。
执行命令:
Shell代码
echo ulimit -HSn>> /etc/rc.local
echo ulimit -HSn>>/root/.bash_profile
ulimit -HSn 65536
linux怎么分配socketcanid
有连接的socket客户端通过调用Connect函数在socket数毕槐据结构中保存本地和远端信息,无须调用bind(),因为这种情况下只需知道目的机器的IP地址,而客户通过哪个端口与服务器建立连接并不需要关心,socket执行体为你的程序自动选择一个未被占用的端口,并通知你的程序数据什么时候打开端口。
(当然也有特殊情况,linux系统中rlogin命令应当调用bind函数绑定手搜友一个未漏毕用的保留端口号,还有当客户端需要用指定的网络设备接口和端口号进行通信等等)
linux socket编程 怎么设置psh
iptables -I INPUT -s 159.226.49.0/24 -d XXXX(Server IP) –dport 22 -j ACCEPT 其他把22换成相斗乱应的端空闹档口号,照着写即弯配可.
linux socket 设置的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于linux socket 设置,Linux socket设置,轻松实现网络传输控制!,请问linux怎么增大socket连接上限?,linux怎么分配socketcanid,linux socket编程 怎么设置psh的信息别忘了在本站进行查找喔。
香港服务器首选树叶云,2H2G首月10元开通。树叶云(shuyeidc.com)提供简单好用,价格厚道的香港/美国云服务器和独立服务器。IDC+ISP+ICP资质。ARIN和APNIC会员。成熟技术团队15年行业经验。
linux在网卡上添加ip地址没
您好。 可以参考如下操作:1.显示全部的网络接口ifconfig -a2.给某个网络接口配置IPifconfigeth0192.168.1.1 netmask 255.255.255.0up3.配完IP试试通不通ping192.168.1.2注意,回答中使用的IP地址只是举例子。 具体的IP,需要你自己确定。
如何添加永久静态路由
按 win键+X键,在弹出的列表中选择“命令提示符(管理员)”使用dos命令添加静态路由接下来我们所有的操作都是基于“route”命令来实现,可以再命令提示里面输入“ route ?”查看route命令的帮助及语法使用dos命令添加静态路由以图中内容为例,我这里添加了一条去往 10.10.10.0/24网段的静态路由,指定去往此网段的路由都走 172.20.153.254网关,确认添加的内容无误后按回车,弹出“操作完成!”内容表示路由添加成功;其中此处用到的几个参数的作用是:-p 表示永久路由,重启后不丢失Add 添加路由10.10.10.0 表示目的网段的网络地址Mask 固定命令,后面跟的是目标网段的子网掩码172.20.153.254 是去往目的网段的吓一跳使用dos命令添加静态路由可以通过“route print”命令来查看听见的静态路由使用dos命令添加静态路由可通过 “route delete 目的网段网络地址”删除添加的静态路由使用dos命令添加静态路由
常用网络命令有哪几种 都是什么
计算机网络的主要优点是能够实现资源和信息的共享,并且用户可以远程访问信息。 Linux提供了一组强有力的网络命令来为用户服务,这些工具能够帮助用户登录到远程计算机上、传输文件和执行远程命令等。 本章介绍下列几个常用的有关网络操作的命令: ftp 传输文件 telnet 登录到远程计算机上 r - 使用各种远程命令 netstat 查看网络的状况 nslookup 查询域名和IP地址的对应 finger 查询某个使用者的信息 ping 查询某个机器是否在工作 使用ftp命令进行远程文件传输 ftp命令是标准的文件传输协议的用户接口。 ftp是在TCP/IP网络上的计算机之间传输文件的简单有效的方法。 它允许用户传输ASCII文件和二进制文件。 在ftp会话过程中,用户可以通过使用ftp客户程序连接到另一台计算机上。 从此,用户可以在目录中上下移动、列出目录内容、把文件从远程机拷贝到本地机上、把文件从本地机传输到远程系统中。 需要注意的是,如果用户没有那个文件的存取权限,就不能从远程系统中获得文件或向远程系统传输文件。 为了使用ftp来传输文件,用户必须知道远程计算机上的合法用户名和口令。 这个用户名/口令的组合用来确认ftp 会话,并用来确定用户对要传输的文件可以进行什么样的访问。 另外,用户显然需要知道对其进行ftp 会话的计算机的名字或IP地址。 Ftp命令的功能是在本地机和远程机之间传送文件。 该命令的一般格式如下: $ ftp 主机名/IP 其中“主机名/IP”是所要连接的远程机的主机名或IP地址。 在命令行中,主机名属于选项,如果指定主机名,ftp将试图与远程机的ftp服务程序进行连接;如果没有指定主机名,ftp将给出提示符,等待用户输入命令: $ ftp ftp > 此时在ftp>提示符后面输入open命令加主机名或IP地址,将试图连接指定的主机。 不管使用哪一种方法,如果连接成功,需要在远程机上登录。 用户如果在远程机上有帐号,就可以通过ftp使用这一帐号并需要提供口令。 在远程机上的用户帐号的读写权限决定该用户在远程机上能下载什么文件和将上载文件放到哪个目录中。 如果没有远程机的专用登录帐号,许多ftp站点设有可以使用的特殊帐号。 这个帐号的登录名为anonymous(也称为匿名ftp),当使用这一帐号时,要求输入email地址作为口令。 如果远程系统提供匿名ftp服务,用户使用这项服务可以登录到特殊的,供公开使用的目录。 一般专门提供两个目录:pub目录和incoming目录。 pub目录包含该站点供公众使用的所有文件,incoming目录存放上载到该站点的文件。 一旦用户使用ftp在远程站点上登录成功,将得到“ftp>”提示符。 现在可以自由使用ftp提供的命令,可以用 help命令取得可供使用的命令清单,也可以在 help命令后面指定具体的命令名称,获得这条命令的说明。 最常用的命令有: ls 列出远程机的当前目录 cd 在远程机上改变工作目录 lcd 在本地机上改变工作目录 ascii 设置文件传输方式为ASCII模式 binary 设置文件传输方式为二进制模式 close终止当前的ftp会话 hash 每次传输完数据缓冲区中的数据后就显示一个#号 get(mget) 从远程机传送指定文件到本地机 put(mput) 从本地机传送指定文件到远程机 open 连接远程ftp站点 quit断开与远程机的连接并退出ftp ? 显示本地帮助信息 ! 转到Shell中 下面简单将ftp常用命令作一简介。 启动ftp会话 open命令用于打开一个与远程主机的会话。 该命令的一般格式是: open 主机名/IP 如果在ftp 会话期间要与一个以上的站点连接,通常只用不带参数的ftp命令。 如果在会话期间只想与一台计算机连接,那么在命令行上指定远程主机名或IP地址作为ftp命令的参数。 终止ftp会话 close、disconnect、quit和bye命令用于终止与远程机的会话。 close和disronnect命令关闭与远程机的连接,但是使用户留在本地计算机的ftp程序中。 quit和bye命令都关闭用户与远程机的连接,然后退出用户机上的ftp 程序。 改变目录 “cd [目录]”命令用于在ftp会话期间改变远程机上的目录,lcd命令改变本地目录,使用户能指定查找或放置本地文件的位置。 远程目录列表 ls命令列出远程目录的内容,就像使用一个交互shell中的ls命令一样。 ls命令的一般格式是: ls [目录] [本地文件] 如果指定了目录作为参数,那么ls就列出该目录的内容。 如果给出一个本地文件的名字,那么这个目录列表被放入本地机上您指定的这个文件中。 从远程系统获取文件 get和mget命令用于从远程机上获取文件。 get命令的一般格式为: get 文件名 您还可以给出本地文件名,这个文件名是这个要获取的文件在您的本地机上创建时的文件名。 如果您不给出一个本地文件名,那么就使用远程文件原来的名字。 mget命令一次获取多个远程文件。 mget命令的一般格式为: mget 文件名列表 使用用空格分隔的或带通配符的文件名列表来指定要获取的文件,对其中的每个文件都要求用户确认是否传送。 向远程系统发送文件 put和mput命令用于向远程机发送文件。 Put命令的一般格式为: put 文件名 mput命令一次发送多个本地文件,mput命令的一般格式为: mput 文件名列表 使用用空格分隔的或带通配符的文件名列表来指定要发送的文件。 对其中的每个文件都要求用户确认是否发送。 改变文件传输模式 默认情况下,ftp按ASCII模式传输文件,用户也可以指定其他模式。 ascii和brinary命令的功能是设置传输的模式。 用ASCII模式传输文件对纯文本是非常好的,但为避免对二进制文件的破坏,用户可以以二进制模式传输文件。 检查传输状态 传输大型文件时,可能会发现让ftp提供关于传输情况的反馈信息是非常有用的。 hash命令使ftp在每次传输完数据缓冲区中的数据后,就在屏幕上打印一个#字符。 本命令在发送和接收文件时都可以使用。 ftp中的本地命令 当您使用ftp时,字符“!”用于向本地机上的命令shell传送一个命令。 如果用户处在ftp会话中,需要shell做某些事,就很有用。 例如用户要建立一个目录来保存接收到的文件。 如果输入!mkdir new_dir,那么Linux就在用户当前的本地目录中创建一个名为new_dir 的目录。 从远程机grunthos下载二进制数据文件的典型对话过程如下: $ ftp grunthos Connected to grunthos 220 grunthos ftp server Name (grunthos:pc): anonymous 33l Guest login ok, send your complete e-mail address as password. Password: 230 Guest 1ogin ok, access restrictions apply. Remote system type is UNIX. ftp > cd pub 250 CWD command successful. ftp > ls 200 PORT command successful. l50 opening ASCII mode data connection for /bin/1s. total ll4 rog1 rog2 226 Transfer comp1ete . ftp > binary 200 type set to I. ftp > hash Hash mark printing on (1024 bytes/hash mark). ftp > get rog1 200 PORT command successfu1. 150 opening BINARY mode data connection for rogl (l4684 bytes). # # # # # # # # # # # # # 226 Transfer complete. bytes received in 0.0473 secs (3e + 02 Kbytes/sec) ftp > quit 22l Goodbye. 使用telnet命令访问远程计算机 用户使用telnet命令进行远程登录。 该命令允许用户使用telnet协议在远程计算机之间进行通信,用户可以通过网络在远程计算机上登录,就像登录到本地机上执行命令一样。 为了通过telnet登录到远程计算机上,必须知道远程机上的合法用户名和口令。 虽然有些系统确实为远程用户提供登录功能,但出于对安全的考虑,要限制来宾的操作权限,因此,这种情况下能使用的功能是很少的。 当允许远程用户登录时,系统通常把这些用户放在一个受限制的shell中,以防系统被怀有恶意的或不小心的用户破坏。 用户还可以使用telnet从远程站点登录到自己的计算机上,检查电子邮件、编辑文件和运行程序,就像在本地登录一样。 但是,用户只能使用基于终端的环境而不是X Wndows环境,telnet只为普通终端提供终端仿真,而不支持 X Wndow等图形环境。 telnet命令的一般形式为: telnet 主机名/IP 其中“主机名/IP”是要连接的远程机的主机名或IP地址。 如果这一命令执行成功,将从远程机上得到login:提示符。 使用telnet命令登录的过程如下: $ telnet 主机名/IP 启动telnet会话。 一旦telnet成功地连接到远程系统上,就显示登录信息并提示用户输人用户名和口令。 如果用户名和口令输入正确,就能成功登录并在远程系统上工作。 在telnet提示符后面可以输入很多命令,用来控制telnet会话过程,在telnet联机帮助手册中对这些命令有详细的说明。 下面是一台Linux计算机上的telnet会话举例: $ telnet server. somewhere. com Trying 127.0.0.1… Connected to serve. somewhere. com. Escape character is \?]\. “TurboLinux release 4. 0 (Colgate) kernel 2.0.18 on an I486 login: bubba password: Last login:Mon Nov l5 20:50:43 for localhost Linux 2. 0.6. (Posix). server: ~$ server: ~$ logout Connection closed by foreign host $ 用户结束了远程会话后,一定要确保使用logout命令退出远程系统。 然后telnet报告远程会话被关闭,并返回到用户的本地机的Shell提示符下。 r-系列命令 除ftp和telnet以外,还可以使用r-系列命令访问远程计算机和在网络上交换文件。 使用r-系列命令需要特别注意,因为如果用户不小心,就会造成严重的安全漏洞。 用户发出一个r-系列命令后,远程系统检查名为/etc/的文件,以查看用户的主机是否列在这个文件中。 如果它没有找到用户的主机,就检查远程机上同名用户的主目录中名为.rhosts的文件,看是否包括该用户的主机。 如果该用户的主机包括在这两个文件中的任何一个之中,该用户执行r-系列命令就不用提供口令。 虽然用户每次访问远程机时不用键入口令可能是非常方便的,但是它也可能会带来严重的安全问题。 我们建议用户在建立/etc/和文件之前,仔细考虑r-命令隐含的安全问题。 rlogin命令 rlogin 是“remote login”(远程登录)的缩写。 该命令与telnet命令很相似,允许用户启动远程系统上的交互命令会话。 rlogin 的一般格式是: rlogin [ -8EKLdx ] [ -e char ] [-k realm ] [ - l username ] host 一般最常用的格式是: rlogin host 该命令中各选项的含义为: -8 此选项始终允许8位输入数据通道。 该选项允许发送格式化的ANSI字符和其他的特殊代码。 如果不用这个选项,除非远端的终止和启动字符不是或,否则就去掉奇偶校验位。 -E 停止把任何字符当作转义字符。 当和-8选项一起使用时,它提供一个完全的透明连接。 -K 关闭所有的Kerberos确认。 只有与使用Kerberos 确认协议的主机连接时才使用这个选项。 -L 允许rlogin会话在litout模式中运行。 要了解更多信息,请查阅tty联机帮助。 -d 打开与远程主机进行通信的TCP sockets的socket调试。 要了解更多信息,请查阅setsockopt的联机帮助。 -e 为rlogin会话设置转义字符,默认的转义字符是“~”,用户可以指定一个文字字符或一个\\nnn形式的八进制数。 -k 请求rlogin获得在指定区域内的远程主机的Kerberos许可,而不是获得由krb_realmofhost(3)确定的远程主机区域内的远程主机的Kerberos 许可。 -x 为所有通过rlogin会话传送的数据打开DES加密。 这会影响响应时间和CPU利用率,但是可以提高安全性。 rsh命令 rsh是“remote shell”(远程 shell)的缩写。 该命令在指定的远程主机上启动一个shell并执行用户在rsh命令行中指定的命令。 如果用户没有给出要执行的命令,rsh就用rlogin命令使用户登录到远程机上。 rsh命令的一般格式是: rsh [-Kdnx] [-k realm] [-l username] host [command] 一般常用的格式是: rsh host [command ] command可以是从shell提示符下键人的任何Linux命令。 rsh命令中各选项的含义如下: -K 关闭所有的Kerbero确认。 该选项只在与使用Kerbero确认的主机连接时才使用。 -d 打开与远程主机进行通信的TCP sockets的socket调试。 要了解更多的信息,请查阅setsockopt的联机帮助。 -k 请求rsh获得在指定区域内的远程主机的Kerberos许可,而不是获得由krb_relmofhost(3)确定的远程主机区域内的远程主机的Kerberos许可。 -l 缺省情况下,远程用户名与本地用户名相同。 本选项允许指定远程用户名,如果指定了远程用户名,则使用Kerberos 确认,与在rlogin命令中一样。 -n 重定向来自特殊设备/dev/null的输入。 -x 为传送的所有数据打开DES加密。 这会影响响应时间和CPU利用率,但是可以提高安全性。 Linux把标准输入放入rsh命令中,并把它拷贝到要远程执行的命令的标准输入中。 它把远程命令的标准输出拷贝到rsh的标准输出中。 它还把远程标准错误拷贝到本地标准错误文件中。 任何退出、中止和中断信号都被送到远程命令中。 当远程命令终止了,rsh也就终止了。 rcp命令 rcp代表“remote file copy”(远程文件拷贝)。 该命令用于在计算机之间拷贝文件。 rcp命令有两种格式。 第一种格式用于文件到文件的拷贝;第二种格式用于把文件或目录拷贝到另一个目录中。 rcp命令的一般格式是: rcp [-px] [-k realm] file1 file2 rcp [-px] [-r] [-k realm] file directory 每个文件或目录参数既可以是远程文件名也可以是本地文件名。 远程文件名具有如下形式:rname@rhost:path,其中rname是远程用户名,rhost是远程计算机名,path是这个文件的路径。 rcp命令的各选项含义如下: -r 递归地把源目录中的所有内容拷贝到目的目录中。 要使用这个选项,目的必须是一个目录。 -p 试图保留源文件的修改时间和模式,忽略umask。 -k 请求rcp获得在指定区域内的远程主机的Kerberos 许可,而不是获得由krb_relmofhost(3)确定的远程主机区域内的远程主机的Kerberos许可。 -x 为传送的所有数据打开DES加密。 这会影响响应时间和CPU利用率,但是可以提高安全性。 如果在文件名中指定的路径不是完整的路径名,那么这个路径被解释为相对远程机上同名用户的主目录。 如果没有给出远程用户名,就使用当前用户名。 如果远程机上的路径包含特殊shell字符,需要用反斜线(\\)、双引号(”)或单引号(’)括起来,使所有的shell元字符都能被远程地解释。 需要说明的是,rcp不提示输入口令,它通过rsh命令来执行拷贝。 - Turbolinux 提供稿件
发表评论