Redis存储之谜:写入不可读
Redis是一个流行的内存数据存储系统,被广泛应用于缓存、消息队列、实时排行榜等场景。Redis的高性能得益于其完全基于内存的架构和优秀的数据结构设计,其中最著名的便是键值对存储模型。在Redis中,用户可以通过SET命令将一个键值对存储到指定的键名中,通过GET命令将该键值对读取出来。然而在某些情况下,用户虽然成功写入了数据,但在后续读取操作中无法获取到该数据,这究竟是什么原因呢?
在Redis中,写入不可读的情况通常是由于数据被REDIS持久化机制所导致的。持久化机制是为了保证系统故障或者重启后,Redis中缓存的数据不会丢失而设计的。Redis提供了RDB和AOF两种持久化方式。RDB持久化将Redis数据在指定的时间间隔内写入一个快照文件中,而AOF持久化则是将Redis的写操作转化为有序的文件追加操作。在进行持久化操作时,Redis会将内存数据写入到磁盘中,并保证在磁盘上的数据内容和内存中的数据内容完全一致。这样,即使系统重启,也可以通过重新加载数据文件或重构AOF日志来恢复所有的数据。
然而,当Redis进行持久化操作时,会暂停所有读写操作,确保数据写入磁盘的完整性。在这个过程中,如果有新的写操作尝试向Redis中写入数据,那么这些写操作就会被阻塞,无法执行。只有当持久化操作完成后,Redis才会继续处理未处理的写操作。这就是Redis中写入不可读的典型情况:在Redis进行持久化操作时,用户可能会发现SET操作成功执行,但在接下来的GET操作中无法读取到该数据。
为了解决这个问题,我们可以通过以下几种方式来应对:
1. 关闭Redis持久化机制。关闭持久化机制可以解决写入不可读问题,但这样就无法保证Redis中的缓存数据在重启、故障等情况下不会丢失,需要权衡利弊后再做决定。
2. 将Redis持久化操作设为异步执行。Redis支持异步持久化操作,也就是在数据写入内存后,立即响应写操作并继续执行后续操作,而持久化操作则留给后台线程处理。通过这种方式,我们可以保证Redis的写入性能,同时也确保了数据在宕机或重启后的可靠性。这是一个比较理想的解决方案,需要根据具体场景和数据安全考虑来选择。
3. 使用Redis Cluster或Sentinel。如果你的Redis数据量比较大,或者对高可用和容错性有更高的需求,那么对Redis进行分布式部署是一个更好的选择。Redis Cluster可以在多个节点之间分布数据,同时提供了数据的高可用和容错功能。而Sentinel则是针对单节点的高可用和容错工具,通过Sentinel的自动集群管理机制,可以实现Redis的自动故障转移和自动故障恢复功能。
综上所述,写入不可读问题是Redis持久化机制带来的一个副作用。为了提高Redis的可靠性和稳定性,我们需要在具体场景下根据数据安全和性能需要进行权衡选择,使用合适的持久化方式和高可用方案。
香港服务器首选树叶云,2H2G首月10元开通。树叶云(www.IDC.Net)提供简单好用,价格厚道的香港/美国云 服务器 和独立服务器。IDC+ISP+ICP资质。ARIN和APNIC会员。成熟技术团队15年行业经验。

汇编语言中将有符号的字数据A和B中的大者存入C中
Compare SEGMENT ASSUME CS:Compare,DS:Compare ORG 100H Start: mov ax,Acmp ax,Bjge next0mov ax,B next0:mov C,axmov ax,4c00h ;结束程序int 21h A DW ? B DW ? C DW ? Compare ENDS END Start
oracle数据库的后台进程有哪些
DBWR进程:该进程执行将缓冲区写入数据文件,是负责缓冲存储区管理的一个ORACLE后台进程。 当缓冲区中的一缓冲区被修改,它被标志为“弄脏”,DBWR的主要任务是将“弄脏”的缓冲区写入磁盘,使缓冲区保持“干净”。 由于缓冲存储区的缓冲区填入数据库或被用户进程弄脏,未用的缓冲区的数目减少。 当未用的缓冲区下降到很少,以致用户进程要从磁盘读入块到内存存储区时无法找到未用的缓冲区时,DBWR将管理缓冲存储区,使用户进程总可得到未用的缓冲区。 ORACLE采用LRU(LEAST RECENTLY USED)算法(最近最少使用算法)保持内存中的数据块是最近使用的,使I/O最小。 在下列情况预示DBWR 要将弄脏的缓冲区写入磁盘:当一个服务器进程将一缓冲区移入“弄脏”表,该弄脏表达到临界长度时,该服务进程将通知DBWR进行写。 该临界长度是为参数DB-BLOCK-WRITE-BATCH的值的一半。 当一个服务器进程在LRU表中查找DB-BLOCK-MAX-SCAN-CNT缓冲区时,没有查到未用的缓冲区,它停止查找并通知DBWR进行写。 出现超时(每次3秒),DBWR 将通知本身。 当出现检查点时,LGWR将通知DBWR.在前两种情况下,DBWR将弄脏表中的块写入磁盘,每次可写的块数由初始化参数DB-BLOCK- WRITE-BATCH所指定。 如果弄脏表中没有该参数指定块数的缓冲区,DBWR从LUR表中查找另外一个弄脏缓冲区。 如果DBWR在三秒内未活动,则出现超时。 在这种情况下DBWR对LRU表查找指定数目的缓冲区,将所找到任何弄脏缓冲区写入磁盘。 每当出现超时,DBWR查找一个新的缓冲区组。 每次由DBWR查找的缓冲区的数目是为寝化参数DB-BLOCK- WRITE-BATCH的值的二倍。 如果数据库空运转,DBWR最终将全部缓冲区存储区写入磁盘。 在出现检查点时,LGWR指定一修改缓冲区表必须写入到磁盘。 DBWR将指定的缓冲区写入磁盘。 在有些平台上,一个实例可有多个DBWR.在这样的实例中,一些块可写入一磁盘,另一些块可写入其它磁盘。 参数DB-WRITERS控制DBWR进程个数。 LGWR进程:该进程将日志缓冲区写入磁盘上的一个日志文件,它是负责管理日志缓冲区的一个ORACLE后台进程。 LGWR进程将自上次写入磁盘以来的全部日志项输出,LGWR输出:当用户进程提交一事务时写入一个提交记录。 每三秒将日志缓冲区输出。 当日志缓冲区的1/3已满时将日志缓冲区输出。 当DBWR将修改缓冲区写入磁盘时则将日志缓冲区输出。 LGWR进程同步地写入到活动的镜象在线日志文件组。 如果组中一个文件被删除或不可用,LGWR 可继续地写入该组的其它文件。 日志缓冲区是一个循环缓冲区。 当LGWR将日志缓冲区的日志项写入日志文件后,服务器进程可将新的日志项写入到该日志缓冲区。 LGWR 通常写得很快,可确保日志缓冲区总有空间可写入新的日志项。 注意:有时候当需要更多的日志缓冲区时,LWGR在一个事务提交前就将日志项写出,而这些日志项仅当在以后事务提交后才永久化。 ORACLE使用快速提交机制,当用户发出COMMIT语句时,一个COMMIT记录立即放入日志缓冲区,但相应的数据缓冲区改变是被延迟,直到在更有效时才将它们写入数据文件。 当一事务提交时,被赋给一个系统修改号(SCN),它同事务日志项一起记录在日志中。 由于SCN记录在日志中,以致在并行服务器选项配置情况下,恢复操作可以同步。 CKPT进程:该进程在检查点出现时,对全部数据文件的标题进行修改,指示该检查点。 在通常的情况下,该任务由LGWR执行。 然而,如果检查点明显地降低系统性能时,可使CKPT进程运行,将原来由LGWR进程执行的检查点的工作分离出来,由 CKPT进程实现。 对于许多应用情况,CKPT进程是不必要的。 只有当数据库有许多数据文件,LGWR在检查点时明显地降低性能才使CKPT运行。 CKPT进程不将块写入磁盘,该工作是由DBWR完成的。 初始化参数CHECKPOINT-PROCESS控制CKPT进程的使能或使不能。 缺省时为FALSE,即为使不能。 SMON进程:该进程实例启动时执行实例恢复,还负责清理不再使用的临时段。 在具有并行服务器选项的环境下,SMON对有故障CPU或实例进行实例恢复。 SMON进程有规律地被呼醒,检查是否需要,或者其它进程发现需要时可以被调用。 PMON进程:该进程在用户进程出现故障时执行进程恢复,负责清理内存储区和释放该进程所使用的资源。 例:它要重置活动事务表的状态,释放封锁,将该故障的进程的ID从活动进程表中移去。 PMON还周期地检查调度进程(DISPATCHER)和服务器进程的状态,如果已死,则重新启动(不包括有意删除的进程)。 PMON有规律地被呼醒,检查是否需要,或者其它进程发现需要时可以被调用。 RECO进程:该进程是在具有分布式选项时所使用的一个进程,自动地解决在分布式事务中的故障。 一个结点RECO后台进程自动地连接到包含有悬而未决的分布式事务的其它数据库中,RECO自动地解决所有的悬而不决的事务。 任何相应于已处理的悬而不决的事务的行将从每一个数据库的悬挂事务表中删去。 当一数据库服务器的RECO后台进程试图建立同一远程服务器的通信,如果远程服务器是不可用或者网络连接不能建立时,RECO自动地在一个时间间隔之后再次连接。 RECO后台进程仅当在允许分布式事务的系统中出现,而且DISTRIbutED ?C TRANSACTIONS参数是大于进程:该进程将已填满的在线日志文件拷贝到指定的存储设备。 当日志是为ARCHIVELOG使用方式、并可自动地归档时ARCH进程才存在。 LCKn进程:是在具有并行服务器选件环境下使用,可多至10个进程(LCK0,LCK1……,LCK9),用于实例间的封锁。 Dnnn进程(调度进程):该进程允许用户进程共享有限的服务器进程(SERVER PROCESS)。 没有调度进程时,每个用户进程需要一个专用服务进程(DEDICATEDSERVER PROCESS)。 对于多线索服务器(MULTI-THREADED SERVER)可支持多个用户进程。 如果在系统中具有大量用户,多线索服务器可支持大量用户,尤其在客户_服务器环境中。 在一个数据库实例中可建立多个调度进程。 对每种网络协议至少建立一个调度进程。 数据库管理员根据操作系统中每个进程可连接数目的限制决定启动的调度程序的最优数,在实例运行时可增加或删除调度进程。 多线索服务器需要SQL*NET版本2或更后的版本。 在多线索服务器的配置下,一个网络接收器进程等待客户应用连接请求,并将每一个发送到一个调度进程。 如果不能将客户应用连接到一调度进程时,网络接收器进程将启动一个专用服务器进程。 该网络接收器进程不是ORACLE实例的组成部分,它是处理与ORACLE有关的网络进程的组成部分。 在实例启动时,该网络接收器被打开,为用户连接到ORACLE建立一通信路径,然后每一个调度进程把连接请求的调度进程的地址给予于它的接收器。 当一个用户进程作连接请求时,网络接收器进程分析请求并决定该用户是否可使用一调度进程。 如果是,该网络接收器进程返回该调度进程的地址,之后用户进程直接连接到该调度进程。 有些用户进程不能调度进程通信(如果使用SQL*NET以前的版本的用户),网络接收器进程不能将如此用户连接到一调度进程。 在这种情况下,网络接收器建立一个专用服务器进程,建立一种合适的连接.即主要的有:DBWR,LGWR,SMON 其他后台进程有PMON,CKPT等
Redis和Memcache的区别分析
1、 Redis和Memcache都是将数据存放在内存中,都是内存数据库。 不过memcache还可用于缓存其他东西,例如图片、视频等等。 2、Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。 3、虚拟内存--Redis当物理内存用完时,可以将一些很久没用到的value 交换到磁盘4、过期策略--memcache在set时就指定,例如set key1 0 0 8,即永不过期。 Redis可以通过例如expire 设定,例如expire name 105、分布式--设定memcache集群,利用magent做一主多从;redis可以做一主多从。 都可以一主一从6、存储数据安全--memcache挂掉后,数据没了;redis可以定期保存到磁盘(持久化)7、灾难恢复--memcache挂掉后,数据不可恢复; redis数据丢失后可以通过aof恢复8、Redis支持数据的备份,即master-slave模式的数据备份。
发表评论