多线程编程已经成为现代计算机应用程序开发中的必要技术之一。在实际应用中,通过多线程技术可以更好地发挥多核处理器的性能,提高计算效率,减少响应时间。Linux操作系统提供了完善的多线程编程支持,在此基础上又发展了诸多开源多线程框架,比如Qt和Poco。本文将介绍如何在Linux环境下利用Qt和Poco开源框架实现多线程编程。
一、Qt多线程编程
Qt是开源的C++跨平台应用程序开发框架,以其简单易用、高效稳定、跨平台等特点在工业、医疗、航空等领域得到广泛应用。Qt提供了完善的多线程编程支持,开发者可以利用Qt框架轻松地实现多线程应用。
1. 创建线程
Qt中多线程编程需要使用QThread和QObject类。我们需要在QObject类派生的线程对象中实现run()函数,这个函数就是我们线程执行的代码。在run()函数中,我们需要处理多线程操作,如数据读写,网络通信等。例如,创建一个简单的线程程序:
class MyThread : public QThread
vTarget="_blank">OID run() {
for (int i = 0; i
2. 启动线程
创建好线程对象后,我们需要启动线程。调用线程对象的start()函数即可启动线程,如下所示:
MyThread *thread = new MyThread();
thread->start();
3. 信号与槽
Qt提供了信号与槽机制,可以在多个线程间进行通信。我们可以在QThread对象中声明和定义信号和槽函数,然后在多个线程中进行数据交换和通信。例如,声明一个发送消息的信号和接收消息的槽函数:
class MyThread : public QThread
void sendMessage(QString message);
public slots:
void receiveMessage(QString message) {
在线程对象中我们可以通过emit关键字发送信号,如下所示:
emit sendMessage(“hello, thread!”);
4. 线程同步
在多线程编程中,由于多个线程可能同时读写共享数据,容易造成数据冲突和竞争条件。因此,需要使用同步机制来保证数据的一致性。Qt提供了很多同步机制,如互斥锁、读写锁、信号量等。
二、Poco多线程编程
Poco是一款跨平台的C++应用程序开发框架,它提供了许多实用的类和函数库,包括网络、XML、ON、多线程、安全、数据库等方面的功能。下面我们将介绍Poco的多线程编程应用。
1. 线程类
Poco的线程类与Qt的类似,也需要在类中实现run()函数。示例代码如下:
class MyThread : public Poco::Thread
void run() {
for (int i = 0; i
香港服务器首选树叶云,2H2G首月10元开通。树叶云(shuyeidc.com)提供简单好用,价格厚道的香港/美国云 服务器 和独立服务器。IDC+ISP+ICP资质。ARIN和APNIC会员。成熟技术团队15年行业经验。

为什么会产生网页崩溃
导致Web站点崩溃最常见的七大原因
有许多种原因可能导致Web站点无法正常工作,这使得系统地检查所有问题变得很困难。 下面将集中分析总结导致Web站点崩溃的最常见的问题。 如果可以解决这些常规问题,那么也将有能力对付出现的一些意外情况。
磁盘已满导致系统无法正常运行的最可能的原因是磁盘已满。 一个好的网络管理员会密切关注磁盘的使用情况,隔一定的时间,就需要将磁盘上的一些负载转存到备份存储介质中(例如磁带)。
日志文件会很快用光所有的磁盘空间。 Web服务器的日志文件、SQL*Net的日志文件、JDBC日志文件,以及应用程序服务器日志文件均与内存泄漏有同等的危害。 可以采取措施将日志文件保存在与操作系统不同的文件系统中。 日志文件系统空间已满时Web服务器也会被挂起,但机器自身被挂起的几率已大大减低。
C指针错误
用C或C++编写的程序,如Web服务器API模块,有可能导致系统的崩溃,因为只要间接引用指针(即,访问指向的内存)中出现一个错误,就会导致操作系统终止所有程序。 另外,使用了糟糕的C指针的Java模拟量(analog)将访问一个空的对象引用。 Java中的空引用通常不会导致立刻退出JVM,但是前提是程序员能够使用异常处理方法恰当地处理错误。 在这方面,Java无需过多的关注,但使用Java对可靠性进行额外的度量则会对性能产生一些负面影响。
内存泄漏
C/C++程序还可能产生另一个指针问题:丢失对已分配内存的引用。 当内存是在子程序中被分配时,通常会出现这种问题,其结果是程序从子程序中返回时不会释放内存。 如此一来,对已分配的内存的引用就会丢失,只要操作系统还在运行中,则进程就会一直使用该内存。 这样的结果是,曾占用更多的内存的程序会降低系统性能,直到机器完全停止工作,才会完全清空内存。
解决方案之一是使用代码分析工具(如Purify)对代码进行仔细分析,以找出可能出现的泄漏问题。 但这种方法无法找到由其他原因引起的库中的泄漏,因为库的源代码是不可用的。 另一种方法是每隔一段时间,就清除并重启进程。 Apache的Web服务器就会因这个原因创建和清除子进程。
虽然Java本身并无指针,但总的说来,与C程序相比,Java程序使用内存的情况更加糟糕。 在Java中,对象被频繁创建,而直到所有到对象的引用都消失时,垃圾回收程序才会释放内存。 即使运行了垃圾回收程序,也只会将内存还给虚拟机VM,而不是还给操作系统。 结果是:Java程序会用光给它们的所有堆,从不释放。 由于要保存实时(Just In Time,JIT)编译器产生的代码,Java程序的大小有时可能会膨胀为最大堆的数倍之巨。
还有一个问题,情况与此类似。 从连接池分配一个数据库连接,而无法将已分配的连接还回给连接池。 一些连接池有活动计时器,在维持一段时间的静止状态之后,计时器会释放掉数据库连接,但这不足以缓解糟糕的代码快速泄漏数据库连接所造成的资源浪费。
进程缺乏文件描述符
如果已为一台Web服务器或其他关键进程分配了文件描述符,但它却需要更多的文件描述符,则服务器或进程会被挂起或报错,直至得到了所需的文件描述符为止。 文件描述符用来保持对开放文件和开放套接字的跟踪记录,开放文件和开放套接字是Web服务器很关键的组成部分,其任务是将文件复制到网络连接。 默认时,大多数shell有64个文件描述符,这意味着每个从shell启动的进程可以同时打开64个文件和网络连接。 大多数shell都有一个内嵌的ulimit命令可以增加文件描述符的数目。
线程死锁
由多线程带来的性能改善是以可靠性为代价的,主要是因为这样有可能产生线程死锁。 线程死锁时,第一个线程等待第二个线程释放资源,而同时第二个线程又在等待第一个线程释放资源。 我们来想像这样一种情形:在人行道上两个人迎面相遇,为了给对方让道,两人同时向一侧迈出一步,双方无法通过,又同时向另一侧迈出一步,这样还是无法通过。 双方都以同样的迈步方式堵住了对方的去路。 假设这种情况一直持续下去,这样就不难理解为何会发生死锁现象了。
解决死锁没有简单的方法,这是因为使线程产生这种问题是很具体的情况,而且往往有很高的负载。 大多数软件测试产生不了足够多的负载,所以不可能暴露所有的线程错误。 在每一种使用线程的语言中都存在线程死锁问题。 由于使用Java进行线程编程比使用C容易,所以Java程序员中使用线程的人数更多,线程死锁也就越来越普遍了。 可以在Java代码中增加同步关键字的使用,这样可以减少死锁,但这样做也会影响性能。 如果负载过重,数据库内部也有可能发生死锁。
如果程序使用了永久锁,比如锁文件,而且程序结束时没有解除锁状态,则其他进程可能无法使用这种类型的锁,既不能上锁,也不能解除锁。 这会进一步导致系统不能正常工作。 这时必须手动地解锁。
服务器超载
Netscape Web服务器的每个连接都使用一个线程。 Netscape Enterprise Web服务器会在线程用完后挂起,而不为已存在的连接提供任何服务。 如果有一种负载分布机制可以检测到服务器没有响应,则该服务器上的负载就可以分布到其它的Web服务器上,这可能会致使这些服务器一个接一个地用光所有的线程。 这样一来,整个服务器组都会被挂起。 操作系统级别可能还在不断地接收新的连接,而应用程序(Web服务器)却无法为这些连接提供服务。 用户可以在浏览器状态行上看到connected(已连接)的提示消息,但这以后什么也不会发生。
解决问题的一种方法是将参数RqThrottle的值设置为线程数目之下的某个数值,这样如果越过RqThrottle的值,就不会接收新的连接。 那些不能连接的服务器将会停止工作,而连接上的服务器的响应速度则会变慢,但至少已连接的服务器不会被挂起。 这时,文件描述符至少应当被设置为与线程的数目相同的数值,否则,文件描述符将成为一个瓶颈。
数据库中的临时表不够用
许多数据库的临时表(cursor)数目都是固定的,临时表即保留查询结果的内存区域。 在临时表中的数据都被读取后,临时表便会被释放,但大量同时进行的查询可能耗尽数目固定的所有临时表。 这时,其他的查询就需要列队等候,直到有临时表被释放时才能再继续运行。
这是一个不容易被程序员发觉的问题,但会在负载测试时显露出来。 但可能对于数据库管理员(DataBase Administrator,DBA)来说,这个问题十分明显。
此外,还存在一些其他问题:设置的表空间不够用、序号限制太低,这些都会导致表溢出错误。 这些问题表明了一个好的DBA对用于生产的数据库设置和性能进行定期检查的重要性。 而且,大多数数据库厂商也提供了监控和建模工具以帮助解决这些问题。
另外,还有许多因素也极有可能导致Web站点无法工作。 如:相关性、子网流量超载、糟糕的设备驱动程序、硬件故障、包括错误文件的通配符、无意间锁住了关键的表。
怎么样才算得上熟悉多线程编程
1. 了解进程线程的基本概念,能用一种语言在一个平台上实现一个多线程的例子。 (这些不会还写熟悉多线程就太大无畏了)2. 了解为什么要用Mutex之类的工具做锁来同步和保护资源。 弄懂诸如racing condition,死锁之类的概念。 50%公司的见面题,用来砍死大无畏。 3. 了解编译器优化带来的影响,了解cache的影响,了解volatile,memory barrier之类的概念。 如果是主Java的话,去了解一下JVM的内存模型。 以上这些偏硬偏系统端的公司喜欢问,不过由于太基础,稍稍好奇一点的多线程领域程序员都应该会了解,否则略显大无畏。 4. 了解一下你主攻平台+语言所提供的工具库,知道常用的工具的用法和使用场景:Mutex,Semaphore,原子操作集,Condition Variable,spin lock。 这几个算是比较常用的,在各个平台+语言也都有对应实现。 老实说,spinlock,condition variable是我工作里从没用过的,但是也被问过,其他几个都太常用了,如果是java的话再多看一组Executor相关的,以及Java多线程相关的keywords,和object本身提供的同步函数,wait notify之类的,在主Java的公司问过。 5. 了解常用的多线程设计范式,比如读写锁(Reader/Writer Lock,非常经典的范式,有偏向读和写的不同变形,至少被要求写过3次),生产消费范式(写过2次),一些常用容器的实现,比如BlockingQueue(写过3次)或者concurrentHashmap(写过2次)。 如果是主Java的话可以看看JDK的实现。 熟悉一下一些算不上多线程设计模式的小技巧,比如传递只读对象可以避免加锁,或者Copy传递以防外部修改之类的(讨论环节被问过)。 另外值得特别一提的一个小细节是,Singleton的线程安全是个很有意思而且容易出错的话题,值得一看(只被问过一次,不过我答挂了,所以印象及其深)。 还有可能会问的是一些有趣的小场景让你实现一些功能需要线程安全,无法特别准备,但是你能了解上面说的这些范式,不傻的话大多数都能想出来。
linux下C语言编程线程有什么好处呢
子函数只是在主函数里面顺序进行的,但是线程是并发进行的。 当两个线程需要使用同一个资源时还需要设置互斥信号灯,防止两个线程对资源的访问发生冲突。 以上是一个方面,另一个方面是多线程比较结合实际。 不知道你们做过火车的购票仿真没有,当时我们做过,一次用线程实现的,一次用进程实现的。 其目的就是使多个操作看起来像是并发的在执行(实际上CPU是不会同时做多个工作的)
发表评论