随着企业数字化转型的深入,多云环境已成为企业IT架构的主流选择,多云环境下,数据分散在不同云服务商的存储系统中,面临着数据孤岛、管理复杂、性能瓶颈、安全合规等多重挑战,分布式存储凭借其高可用、可扩展、高性价比的特性,成为应对多云存储难题的关键技术,本文将从架构设计、数据管理、性能优化、安全合规及智能化运维五个维度,探讨分布式存储在多云环境的应对之道。
构建统一抽象层,实现跨云存储资源池化
多云环境下,不同云服务商提供的存储接口、协议、性能特性各不相同,若直接对接应用层,将导致系统兼容性差、运维成本高,解决这一问题的核心在于构建统一的存储抽象层,通过标准化接口屏蔽底层云平台的差异性,实现存储资源的池化管理。
具体而言,可采用基于开源协议的分布式存储系统(如Ceph、MinIO)作为统一存储底座,通过适配器对接AWS S3、Azure Blob、Google Cloud Storage等主流云存储服务,形成“本地+混合云+公有云”的统一存储资源池,抽象层需提供标准化的RESTful API和SDK接口,支持应用以统一方式访问不同云的存储资源,同时支持存储策略的动态配置,如根据数据类型(热数据/冷数据/归档数据)自动路由至对应云平台的高性能或低成本存储介质,热数据可存储在本地分布式存储或公有云SSD中,冷数据自动迁移至公有云HDD或归档存储,实现资源利用最优化。
采用数据编织技术,打破跨云数据孤岛
多云环境下的数据分散存储,易形成“数据孤岛”,导致数据共享困难、分析效率低下,分布式存储需结合数据编织(Data Fabric)技术,构建逻辑统一、物理分布的数据管理视图,实现跨云数据的无缝流动与协同。
数据编织的核心是通过元数据管理引擎,对分散在不同云平台的数据资产进行统一编目,支持数据的自动发现、分类和标签化,通过数据虚拟化技术,在不移动原始数据的情况下,实现跨云数据的实时查询与分析,减少数据迁移成本,企业可将分布在AWS、Azure和本地数据中心的数据通过数据编织逻辑整合,形成全局数据目录,应用层可直接访问虚拟化数据视图,而无需关心数据物理位置,数据编织还需支持跨云数据同步与备份策略,基于业务SLA要求,实现数据的异地容灾和跨云恢复,保障数据高可用。
智能调度与分层存储,优化多云性能与成本
多云环境下,不同云平台的存储性能(如IOPS、延迟)和成本(如单价、流量费用)差异显著,如何平衡性能与成本是分布式存储的关键挑战,需通过智能调度算法与分层存储策略,实现资源的最优分配。
在性能优化方面,分布式存储系统需实时监测各云平台的存储性能指标(如读写延迟、吞吐量),结合应用SLA要求,通过智能调度引擎将请求动态路由至最优节点,对低延迟要求的在线业务,优先选择本地分布式存储或公有云时延敏感型实例;对高吞吐要求的批量处理任务,可调度至公有云高吞吐存储节点,并采用并行读写技术提升效率。
在成本控制方面,需实现存储介质的自动分层:热数据(高频访问)保留在高性能SSD中,温数据(中频访问)迁移至大容量HDD,冷数据(低频访问)自动下沉至公有云低成本归档存储(如AWS S3 Glacier、Azure Archive Storage),通过数据压缩、去重技术减少存储空间占用,进一步降低跨云数据存储和传输成本。
构建端到端安全体系,保障多云数据主权与合规
多云环境下,数据跨境流动、多租户共享等特点,使得数据安全与合规风险显著增加,分布式存储需从数据传输、存储、访问三个层面构建端到端安全体系,满足企业数据主权和行业合规要求。
在数据传输安全方面,需支持TLS/SSL加密传输,防止数据在跨云迁移过程中被窃取或篡改;在数据存储安全方面,采用服务端加密(SSE)和客户端加密相结合的方式,支持AES-256等高强度加密算法,同时密钥需由企业自建密钥管理系统(KMS)或硬件安全模块(HSM)统一管理,避免云服务商获取密钥。
在访问控制方面,需基于零信任架构实现细粒度权限管理,支持RBAC(基于角色的访问控制)和ABAC(基于属性的访问控制),结合多因素认证(MFA)确保身份可信;记录所有数据访问日志,通过日志审计系统实现操作可追溯,满足GDPR、等保2.0等合规要求,对于跨境数据场景,可通过分布式存储的数据本地化策略,将敏感数据存储在符合数据主权法规的区域,避免合规风险。
引入AI赋能运维,提升多云存储管理效率
多云分布式存储系统节点多、架构复杂,传统运维模式难以满足高可用性和快速响应需求,需引入人工智能技术,实现运维的智能化与自动化,降低管理复杂度。
AI运维的核心是通过机器学习算法分析存储系统的历史运行数据(如节点负载、磁盘健康度、网络延迟等),实现故障预测与自动修复,通过分析磁盘SMART信息,提前预测磁盘故障并自动触发数据迁移,避免数据丢失;基于负载预测模型,自动调整存储节点资源,应对业务高峰期的性能需求。
AI还可优化存储资源配置,通过分析数据访问模式,自动调整分层存储策略,如将长期未访问的冷数据自动下沉至低成本存储,释放高性能存储资源,智能运维平台需提供可视化监控界面,实时展示多云存储资源的健康状态、性能指标和成本分布,帮助运维人员快速定位问题,提升管理效率。
在多云环境下,分布式存储通过统一抽象层、数据编织、智能分层、安全合规和AI运维等策略,有效解决了数据孤岛、管理复杂、性能瓶颈和安全合规等难题,为企业构建弹性、高效、安全的多云存储架构提供了可行路径,随着云原生、边缘计算等技术的发展,分布式存储将进一步融合智能化与自动化能力,成为企业数字化转型的核心基础设施,支撑企业在多云时代的数据价值释放。
oracle数据库的后台进程有哪些
DBWR进程:该进程执行将缓冲区写入数据文件,是负责缓冲存储区管理的一个ORACLE后台进程。 当缓冲区中的一缓冲区被修改,它被标志为“弄脏”,DBWR的主要任务是将“弄脏”的缓冲区写入磁盘,使缓冲区保持“干净”。 由于缓冲存储区的缓冲区填入数据库或被用户进程弄脏,未用的缓冲区的数目减少。 当未用的缓冲区下降到很少,以致用户进程要从磁盘读入块到内存存储区时无法找到未用的缓冲区时,DBWR将管理缓冲存储区,使用户进程总可得到未用的缓冲区。 ORACLE采用LRU(LEAST RECENTLY USED)算法(最近最少使用算法)保持内存中的数据块是最近使用的,使I/O最小。 在下列情况预示DBWR 要将弄脏的缓冲区写入磁盘:当一个服务器进程将一缓冲区移入“弄脏”表,该弄脏表达到临界长度时,该服务进程将通知DBWR进行写。 该临界长度是为参数DB-BLOCK-WRITE-BATCH的值的一半。 当一个服务器进程在LRU表中查找DB-BLOCK-MAX-SCAN-CNT缓冲区时,没有查到未用的缓冲区,它停止查找并通知DBWR进行写。 出现超时(每次3秒),DBWR 将通知本身。 当出现检查点时,LGWR将通知DBWR.在前两种情况下,DBWR将弄脏表中的块写入磁盘,每次可写的块数由初始化参数DB-BLOCK- WRITE-BATCH所指定。 如果弄脏表中没有该参数指定块数的缓冲区,DBWR从LUR表中查找另外一个弄脏缓冲区。 如果DBWR在三秒内未活动,则出现超时。 在这种情况下DBWR对LRU表查找指定数目的缓冲区,将所找到任何弄脏缓冲区写入磁盘。 每当出现超时,DBWR查找一个新的缓冲区组。 每次由DBWR查找的缓冲区的数目是为寝化参数DB-BLOCK- WRITE-BATCH的值的二倍。 如果数据库空运转,DBWR最终将全部缓冲区存储区写入磁盘。 在出现检查点时,LGWR指定一修改缓冲区表必须写入到磁盘。 DBWR将指定的缓冲区写入磁盘。 在有些平台上,一个实例可有多个DBWR.在这样的实例中,一些块可写入一磁盘,另一些块可写入其它磁盘。 参数DB-WRITERS控制DBWR进程个数。 LGWR进程:该进程将日志缓冲区写入磁盘上的一个日志文件,它是负责管理日志缓冲区的一个ORACLE后台进程。 LGWR进程将自上次写入磁盘以来的全部日志项输出,LGWR输出:当用户进程提交一事务时写入一个提交记录。 每三秒将日志缓冲区输出。 当日志缓冲区的1/3已满时将日志缓冲区输出。 当DBWR将修改缓冲区写入磁盘时则将日志缓冲区输出。 LGWR进程同步地写入到活动的镜象在线日志文件组。 如果组中一个文件被删除或不可用,LGWR 可继续地写入该组的其它文件。 日志缓冲区是一个循环缓冲区。 当LGWR将日志缓冲区的日志项写入日志文件后,服务器进程可将新的日志项写入到该日志缓冲区。 LGWR 通常写得很快,可确保日志缓冲区总有空间可写入新的日志项。 注意:有时候当需要更多的日志缓冲区时,LWGR在一个事务提交前就将日志项写出,而这些日志项仅当在以后事务提交后才永久化。 ORACLE使用快速提交机制,当用户发出COMMIT语句时,一个COMMIT记录立即放入日志缓冲区,但相应的数据缓冲区改变是被延迟,直到在更有效时才将它们写入数据文件。 当一事务提交时,被赋给一个系统修改号(SCN),它同事务日志项一起记录在日志中。 由于SCN记录在日志中,以致在并行服务器选项配置情况下,恢复操作可以同步。 CKPT进程:该进程在检查点出现时,对全部数据文件的标题进行修改,指示该检查点。 在通常的情况下,该任务由LGWR执行。 然而,如果检查点明显地降低系统性能时,可使CKPT进程运行,将原来由LGWR进程执行的检查点的工作分离出来,由 CKPT进程实现。 对于许多应用情况,CKPT进程是不必要的。 只有当数据库有许多数据文件,LGWR在检查点时明显地降低性能才使CKPT运行。 CKPT进程不将块写入磁盘,该工作是由DBWR完成的。 初始化参数CHECKPOINT-PROCESS控制CKPT进程的使能或使不能。 缺省时为FALSE,即为使不能。 SMON进程:该进程实例启动时执行实例恢复,还负责清理不再使用的临时段。 在具有并行服务器选项的环境下,SMON对有故障CPU或实例进行实例恢复。 SMON进程有规律地被呼醒,检查是否需要,或者其它进程发现需要时可以被调用。 PMON进程:该进程在用户进程出现故障时执行进程恢复,负责清理内存储区和释放该进程所使用的资源。 例:它要重置活动事务表的状态,释放封锁,将该故障的进程的ID从活动进程表中移去。 PMON还周期地检查调度进程(DISPATCHER)和服务器进程的状态,如果已死,则重新启动(不包括有意删除的进程)。 PMON有规律地被呼醒,检查是否需要,或者其它进程发现需要时可以被调用。 RECO进程:该进程是在具有分布式选项时所使用的一个进程,自动地解决在分布式事务中的故障。 一个结点RECO后台进程自动地连接到包含有悬而未决的分布式事务的其它数据库中,RECO自动地解决所有的悬而不决的事务。 任何相应于已处理的悬而不决的事务的行将从每一个数据库的悬挂事务表中删去。 当一数据库服务器的RECO后台进程试图建立同一远程服务器的通信,如果远程服务器是不可用或者网络连接不能建立时,RECO自动地在一个时间间隔之后再次连接。 RECO后台进程仅当在允许分布式事务的系统中出现,而且DISTRIBUTED ?C TRANSACTIONS参数是大于进程:该进程将已填满的在线日志文件拷贝到指定的存储设备。 当日志是为ARCHIVELOG使用方式、并可自动地归档时ARCH进程才存在。 LCKn进程:是在具有并行服务器选件环境下使用,可多至10个进程(LCK0,LCK1……,LCK9),用于实例间的封锁。 Dnnn进程(调度进程):该进程允许用户进程共享有限的服务器进程(SERVER PROCESS)。 没有调度进程时,每个用户进程需要一个专用服务进程(DEDICATEDSERVER PROCESS)。 对于多线索服务器(MULTI-THREADED SERVER)可支持多个用户进程。 如果在系统中具有大量用户,多线索服务器可支持大量用户,尤其在客户_服务器环境中。 在一个数据库实例中可建立多个调度进程。 对每种网络协议至少建立一个调度进程。 数据库管理员根据操作系统中每个进程可连接数目的限制决定启动的调度程序的最优数,在实例运行时可增加或删除调度进程。 多线索服务器需要SQL*NET版本2或更后的版本。 在多线索服务器的配置下,一个网络接收器进程等待客户应用连接请求,并将每一个发送到一个调度进程。 如果不能将客户应用连接到一调度进程时,网络接收器进程将启动一个专用服务器进程。 该网络接收器进程不是ORACLE实例的组成部分,它是处理与ORACLE有关的网络进程的组成部分。 在实例启动时,该网络接收器被打开,为用户连接到ORACLE建立一通信路径,然后每一个调度进程把连接请求的调度进程的地址给予于它的接收器。 当一个用户进程作连接请求时,网络接收器进程分析请求并决定该用户是否可使用一调度进程。 如果是,该网络接收器进程返回该调度进程的地址,之后用户进程直接连接到该调度进程。 有些用户进程不能调度进程通信(如果使用SQL*NET以前的版本的用户),网络接收器进程不能将如此用户连接到一调度进程。 在这种情况下,网络接收器建立一个专用服务器进程,建立一种合适的连接.即主要的有:DBWR,LGWR,SMON 其他后台进程有PMON,CKPT等
memcached和redis的区别
medis与Memcached的区别传统MySQL+ Memcached架构遇到的问题 实际MySQL是适合进行海量数据存储的,通过Memcached将热点数据加载到cache,加速访问,很多公司都曾经使用过这样的架构,但随着业务数据量的不断增加,和访问量的持续增长,我们遇到了很多问题: 需要不断进行拆库拆表,Memcached也需不断跟着扩容,扩容和维护工作占据大量开发时间。 与MySQL数据库数据一致性问题。 数据命中率低或down机,大量访问直接穿透到DB,MySQL无法支撑。 4.跨机房cache同步问题。 众多NoSQL百花齐放,如何选择 最近几年,业界不断涌现出很多各种各样的NoSQL产品,那么如何才能正确地使用好这些产品,最大化地发挥其长处,是我们需要深入研究和思考的问题,实际归根结底最重要的是了解这些产品的定位,并且了解到每款产品的tradeoffs,在实际应用中做到扬长避短,总体上这些NoSQL主要用于解决以下几种问题 1.少量数据存储,高速读写访问。 此类产品通过数据全部in-momery 的方式来保证高速访问,同时提供数据落地的功能,实际这正是Redis最主要的适用场景。 2.海量数据存储,分布式系统支持,数据一致性保证,方便的集群节点添加/删除。 3.这方面最具代表性的是dynamo和bigtable 2篇论文所阐述的思路。 前者是一个完全无中心的设计,节点之间通过gossip方式传递集群信息,数据保证最终一致性,后者是一个中心化的方案设计,通过类似一个分布式锁服务来保证强一致性,数据写入先写内存和redo log,然后定期compat归并到磁盘上,将随机写优化为顺序写,提高写入性能。 free,auto-sharding等。 比如目前常见的一些文档数据库都是支持schema-free的,直接存储json格式数据,并且支持auto-sharding等功能,比如mongodb。 面对这些不同类型的NoSQL产品,我们需要根据我们的业务场景选择最合适的产品。 Redis适用场景,如何正确的使用 前面已经分析过,Redis最适合所有数据in-momory的场景,虽然Redis也提供持久化功能,但实际更多的是一个disk-backed的功能,跟传统意义上的持久化有比较大的差别,那么可能大家就会有疑问,似乎Redis更像一个加强版的Memcached,那么何时使用Memcached,何时使用Redis呢?如果简单地比较Redis与Memcached的区别,大多数都会得到以下观点: 1Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,zset,hash等数据结构的存储。 2Redis支持数据的备份,即master-slave模式的数据备份。 3Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。 抛开这些,可以深入到Redis内部构造去观察更加本质的区别,理解Redis的设计。 在Redis中,并不是所有的数据都一直存储在内存中的。 这是和Memcached相比一个最大的区别。 Redis只会缓存所有的 key的信息,如果Redis发现内存的使用量超过了某一个阀值,将触发swap的操作,Redis根据“swappability = age*log(size_in_memory)”计 算出哪些key对应的value需要swap到磁盘。 然后再将这些key对应的value持久化到磁盘中,同时在内存中清除。 这种特性使得Redis可以 保持超过其机器本身内存大小的数据。 当然,机器本身的内存必须要能够保持所有的key,毕竟这些数据是不会进行swap操作的。 同时由于Redis将内存 中的数据swap到磁盘中的时候,提供服务的主线程和进行swap操作的子线程会共享这部分内存,所以如果更新需要swap的数据,Redis将阻塞这个 操作,直到子线程完成swap操作后才可以进行修改。 使用Redis特有内存模型前后的情况对比: VM off: 300k keys, 4096 bytes values: 1.3G used VM on:300k keys, 4096 bytes values: 73M used VM off: 1 million keys, 256 bytes values: 430.12M used VM on:1 million keys, 256 bytes values: 160.09M used VM on:1 million keys, values as large as you want, still: 160.09M used当 从Redis中读取数据的时候,如果读取的key对应的value不在内存中,那么Redis就需要从swap文件中加载相应数据,然后再返回给请求方。 这里就存在一个I/O线程池的问题。 在默认的情况下,Redis会出现阻塞,即完成所有的swap文件加载后才会相应。 这种策略在客户端的数量较小,进行 批量操作的时候比较合适。 但是如果将Redis应用在一个大型的网站应用程序中,这显然是无法满足大并发的情况的。 所以Redis运行我们设置I/O线程 池的大小,对需要从swap文件中加载相应数据的读取请求进行并发操作,减少阻塞的时间。 如果希望在海量数据的环境中使用好Redis,我相信理解Redis的内存设计和阻塞的情况是不可缺少的。
PHP.JSP.ASP的区别
ASP全名Active Server Pages,是一个WEB服务器端的开发环境,利用它可以产生和执行动态的、互动的、高性能的WEB服务应用程序。 ASP采用脚本语言VBScript(Java script)作为自己的开发语言。 PHP是一种跨平台的服务器端的嵌入式脚本语言。 它大量地借用C,Java和Perl语言的语法, 并耦合PHP自己的特性,使WEB开发者能够快速地写出动态产生页面。 它支持目前绝大多数数据库。 还有一点,PHP是完全免费的,不用花钱,你可以从PHP官方站点(http: //)自由下载。 而且你可以不受限制地获得源码,甚至可以从中加进你自己需要的特色。 JSP是Sun公司推出的新一代网站开发语言,Sun公司借助自己在Java上的不凡造诣,将Java从Java应用程序和Java Applet之外,又有新的硕果,就是JSP,Java Server Page。 JSP可以在Serverlet和JavaBean的支持下,完成功能强大的站点程序。 三者都提供在 HTML代码中混合某种程序代码、由语言引擎解释执行程序代码的能力。 但JSP代码被编译成 Servlet并由Java虚拟机解释执行,这种编译操作仅在对JSP页面的第一次请求时发生。 在ASP 、PHP、JSP环境下,HTML代码主要负责描述信息的显示样式,而程序代码则用来描述处理逻辑。 普通的 HTML页面只依赖于Web服务器,而ASP 、PHP、JSP页面需要附加的语言引擎分析和执行程序代码。 程序代码的执行结果被重新嵌入到HTML代码中,然后一起发送给浏览器。 ASP 、PHP、JSP三者都是面向Web服务器的技术,客户端浏览器不需要任何附加的软件支持。 技术特点ASP:1. 使用VBScript 、 JScript等简单易懂的脚本语言,结合HTML代码,即可快速地完成网站的应用程序。 2. 无须compile编译,容易编写,可在服务器端直接执行。 3. 使用普通的文本编辑器,如Windows的记事本,即可进行编辑设计。 4. 与浏览器无关(Browser Independence), 客户端只要使用可执行HTML码的浏览器,即可浏览Active Server Pages所设计的网页内容。 Active ServerPages 所使用的脚本语言(VBScript 、 Jscript)均在WEB服务器端执行,客户端的浏览器不需要能够执行这些脚本语言。 Server Pages能与任何ActiveX scripting语言兼容。 除了可使用VB Script或JScript语言来设计外,还通过plug-in的方式,使用由第三方所提供的其它脚本语言,譬如REXX 、Perl 、Tcl等。 脚本引擎是处理脚本程序的COM(CompOnent Object Model) 对象。 6. 可使用服务器端的脚本来产生客户端的脚本。 7. ActiveX Server Components(ActiveX 服务器组件 )具有无限可扩充性。 可以使用Visual Basic 、Java 、Visual C++ 、COBOL等程序设计语言来编写你所需要的ActiveX Server Component 。 PHP:1?数据库连接PHP可以编译成具有与许多数据库相连接的函数。 PHP与MySQL是现在绝佳的群组合。 你还可以自己编写外围的函数去间接存取数据库。 通过这样的途径当你更换使用的数据库时,可以轻松地修改编码以适应这样的变化。 PHPLIB就是最常用的可以提供一般事务需要的一系列基库。 但PHP提供的数据库接口支持彼此不统一,比如对Oracle, MySQL,Sybase的接口,彼此都不一样。 这也是PHP的一个弱点。 JSP:1?将内容的产生和显示进行分离使用JSP技术,Web页面开发人员可以使用HTML或者XML标识来设计和格式化最终页面。 使用JSP标识或者小脚本来产生页面上的动态内容。 产生内容的逻辑被封装在标识和JavaBeans群组件中,并且捆绑在小脚本中,所有的脚本在服务器端执行。 如果核心逻辑被封装在标识和Beans中,那么其它人,如Web管理人员和页面设计者,能够编辑和使用JSP页面,而不影响内容的产生。 在服务器端,JSP引擎解释JSP标识,产生所请求的内容(例如,通过存取JavaBeans群组件,使用JDBC技术存取数据库),并且将结果以HTML(或者XML)页面的形式发送回浏览器。 这有助于作者保护自己的代码,而又保证任何基于HTML的Web浏览器的完全可用性。 2?强调可重用的群组件绝大多数JSP页面依赖于可重用且跨平台的组件(如:JavaBeans或者Enterprise JavaBeans)来执行应用程序所要求的更为复杂的处理。 开发人员能够共享和交换执行普通操作的组件,或者使得这些组件为更多的使用者或者用户团体所使用。 基于组件的方法加速了总体开发过程,并且使得各种群组织在他们现有的技能和优化结果的开发努力中得到平衡。 3?采用标识简化页面开发Web页面开发人员不会都是熟悉脚本语言的程序设计人员。 JavaServer Page技术封装了许多功能,这些功能是在易用的、与JSP相关的XML标识中进行动态内容产生所需要的。 标准的JSP标识能够存取和实例化 JavaBeans组件,设定或者检索群组件属性,下载Applet,以及执行用其它方法更难于编码和耗时的功能。 通过开发定制化标识库,JSP技术是可以扩展的。 今后,第三方开发人员和其它人员可以为常用功能建立自己的标识库。 这使得Web页面开发人员能够使用熟悉的工具和如同标识一样的执行特定功能的构件来工作。 JSP技术很容易整合到多种应用体系结构中,以利用现存的工具和技巧,并且扩展到能够支持企业级的分布式应用。 作为采用Java技术家族的一部分,以及Java 2EE的一个成员,JSP技术能够支持高度复杂的基于Web的应用。 由于JSP页面的内置脚本语言是基于Java程序设计语言的,而且所有的JSP页面都被编译成为Java Servlet,JSP页面就具有Java技术的所有好处,包括健壮的存储管理和安全性。 作为Java平台的一部分,JSP拥有Java程序设计语言“一次编写,各处执行”的特点。 随着越来越多的供货商将JSP支持加入到他们的产品中,您可以使用自己所选择的服务器和工具,修改工具或服务器并不影响目前的应用。 应用范围ASP是Microsoft开发的动态网页语言,也继承了微软产品的一贯传统,只能执行于微软的服务器产品,IIS(Internet Information Server) (windows NT)和PWS(Personal Web Server)(windows 98)上。 Unix下也有ChiliSoft的组件来支持ASP,但是ASP本身的功能有限,必须通过ASP+COM的群组合来扩充,Unix下的COM实现起来非常困难。 PHP3可在Windows,Unix,Linux的Web服务器上正常执行,还支持IIS,Apache等一般的Web服务器,用户更换平台时,无需变换PHP3代码,可即拿即用。 JSP同PHP3类似,几乎可以执行于所有平台。 如Win NT,Linux,Unix。 在NT下IIS通过一个外加服务器,例如JRUN或者ServletExec,就能支持JSP。 知名的Web服务器Apache已经能够支持JSP。 由于Apache广泛应用在NT、Unix和Linux上,因此JSP有更广泛的执行平台。 虽然现在NT操作系统占了很大的市场份额,但是在服务器方面Unix的优势仍然很大,而新崛起的Linux更是来势不小。 从一个平台移植到另外一个平台,JSP和JavaBean甚至不用重新编译,因为Java字节码都是标准的与平台无关的。 性能比较有人做过试验,对这三种语言分别做回圈性能测试及存取Oracle数据库测试。 在循环性能测试中,JSP只用了令人吃惊的四秒钟就结束了*的回圈。 而ASP、PHP测试的是2000*2000循环(少一个数量级),却分别用了63秒和84秒。 (参考PHPLIB)。 数据库测试中,三者分别对 Oracle 8 进行 1000 次 INSERT,Update,Select和Delete: JSP 需要 13 秒,PHP 需要 69 秒,ASP则 需要 73 秒。 前景分析目前在国内PHP与ASP应用最为广泛。 而JSP由于是一种较新的技术,国内采用的较少。 但在国外,JSP已经是比较流行的一种技术,尤其是电子商务类的网站,多采用JSP。 采用PHP的网站如新浪网(sina)、中国人(Chinaren)等,但由于PHP本身存在的一些缺点,使得它不适合应用于大型电子商务站点,而更适合一些小型的商业站点。 首先,PHP缺乏规模支持。 其次,缺乏多层结构支持。 对于大负荷站点,解决方法只有一个:分布计算。 数据库、应用逻辑层、表示逻辑层彼此分开,而且同层也可以根据流量分开,群组成二维数组。 而PHP则缺乏这种支持。 还有上面提到过的一点,PHP提供的数据库接口支持不统一,这就使得它不适合运用在电子商务中。 ASP和JSP则没有以上缺陷,ASP可以通过Microsoft Windowsd的COM/DCOM获得ActiveX规模支持,通过DCOM和Transcation Server获得结构支持;JSP可以通过SUN Java的Java Class和EJB获得规模支持,通过EJB/CORBA以及众多厂商的Application Server获得结构支持。 三者中,JSP应该是未来发展的趋势。 世界上一些大的电子商务解决方案提供商都采用JSP/Servlet。 比较出名的如IBM的E-business,它的核心是采用JSP/Servlet的Web Sphere。 它们都是通过CGI来提供支持的。 但去年10月后它推出了Enfinity,一个采用JSP/Servlet的电子商务Application Server,而且声言不再开发传统软件。 总之,ASP,PHP,JSP三者都有相当数量的支持者,由此也可以看出三者各有所长。 正在学习或使用动态页面的朋友可根据三者的特点选择一种适合自己的语言。














发表评论