价格及安装方法-Y型截止阀JY30W2CDN25的用途

教程大全 2026-01-24 10:07:09 浏览

在现代化工业流程中,阀门作为控制流体输送的关键设备,其性能与可靠性直接关系到整个系统的安全与效率,在众多阀门类型中,Y型截止阀凭借其独特的结构设计和优异的性能表现,在高温、高压等苛刻工况下得到了广泛应用,本文将聚焦于一款具体的工业阀门——y型截止阀JY30W2CDN25,从其型号解析、结构原理、核心部件、性能特点到应用领域及维护要点,进行全面而深入的阐述,旨在为相关领域的工程师和技术人员提供一份详实的参考。

产品型号深度解析

每一个阀门型号都蕴含着丰富的技术信息,y型截止阀JY30W2CDN25亦不例外,通过对其型号的逐字解读,我们可以迅速把握其核心规格与属性。

y型截止阀JY30W2CDN25是一款公称通径为25毫米、压力等级为300磅、采用焊接连接、阀体为碳钢材质、密封面为Cr13不锈钢的Y型结构截止阀。

结构设计与工作原理

Y型截止阀JY30W2CDN25的核心优势在于其独特的Y型结构,传统的直通式(Z型)截止阀,其介质流向需要经过两次90度转弯,会产生较大的压力损失和流阻,而Y型截止阀的阀体通道与出口呈45度角,使得流体在通过阀门时,流动路径更为平缓,接近一条直线。

工作原理 :该阀门通过阀杆的垂直升降来驱动阀瓣(或称阀盘)的运动,从而实现开启和关闭,当手轮或执行机构驱动阀杆逆时针旋转时,阀杆带动阀瓣向上移动,阀瓣与阀座分离,流体通道被打开,介质可以顺畅通过,反之,顺时针旋转手轮,阀杆带动阀瓣向下压紧,与阀座紧密贴合,截断介质流动,其设计通常遵循“低进高出”的原则,即介质从阀瓣下方进入,从上方流出,这样有助于减少开启时所需的力矩,并在关闭时利用介质压力增强密封效果。

核心部件与材质分析

为了确保y型截止阀JY30W2CDN25在严苛环境下的长期稳定运行,其各部件的选材和制造工艺至关重要。

部件名称 常用材质 功能与特性
阀体 WCB碳钢 构成阀门的主要承压部件,具有足够的强度和刚度,耐高温高压。
阀盖 WCB碳钢 与阀体共同构成承压壳体,支撑阀杆和填料系统,通常通过螺栓连接。
阀瓣 2Cr13/堆焊硬质合金 核心启闭件,与阀座配合实现密封,表面硬度高,耐冲刷和磨损。
Y型截止阀应用范围 阀座 2Cr13/堆焊硬质合金 与阀瓣形成密封副,保证阀门关闭时的零泄漏。
阀杆 13Cr不锈钢/合金钢 连接手轮/执行器与阀瓣,传递启闭力矩,需具备良好的强度和抗腐蚀性。
填料 柔性石墨/PTFE 填充于阀杆与阀盖之间的填料函内,防止介质从阀杆处外泄。
垫片 柔性石墨缠绕垫/金属垫 用于阀体与阀盖连接面,确保连接处的密封性,防止内漏。

性能特点与应用领域

主要性能特点

典型应用领域 :y型截止阀JY30W2CDN25凭借其上述优势,被广泛应用于以下工业领域:

安装、维护与注意事项

安装要点

维护与注意事项


相关问答FAQs

问题1:y型截止阀JY30W2CDN25与传统的直通式截止阀相比,最主要的优势是什么?

解答 :最主要的优势在于其更低的流体阻力,Y型截止阀的阀体通道与出口成45度角,使得介质流动路径更平顺,接近直线,从而显著减少了压力损失和能量消耗,而直通式截止阀的流体需要经过两次近乎90度的转弯,流阻较大,在对系统压降要求较为严格或希望节能的管路中,y型截止阀JY30W2CDN25是更优的选择,Y型结构在某些情况下也使得阀门的在线维修更为方便。

问题2:如何判断y型截止阀JY30W2CDN25的密封面是否已经损坏,需要维修或更换?

解答 :判断密封面是否损坏主要通过以下几种方式:


新人求助~阀门的种类?区别?用途?

各类阀门选用指导 闸阀 闸阀是作为截止介质使用,在全开时整个流通直通,此时介质运行的压力损失最小。 闸阀通常适用于不需要经常启闭,而且保持闸板全开或全闭的工况。 不适用于作为调节或节流使用。 对于高速流动的介质,闸板在局部开启状况下可以引起闸门的振动,而振动又可能损伤闸板和阀座的密封面,而节流会使闸板遭受介质的冲蚀。 从结构形式上,主要的区别是所采用的密封元件的形式。 根据密封元件的形式,常常把闸阀分成几种不同的类型,如:楔式闸阀、平行式闸阀、平行双闸板闸阀、楔式双闸板闸等。 最常用的形式是楔式闸阀和平行式闸阀。 截止阀 截止阀的阀杆轴线与阀座密封面垂直。 阀杆开启或关闭行程相对较短,并具有非常可靠的切断动作,使得这种阀门非常适合作为介质的切断或调节及节流使用。 截止阀的阀瓣一旦处于开启状况,它的阀座和阀瓣密封面之间就不再的接触,并具有非常可靠的切断动作,合得这种阀门非常适合作为介质的切断或调节及节流使用。 截止阀一旦处于开启状态,它的阀座和阀瓣密封面之间就不再有接触,因而它的密封面机械磨损较小,由于大部分截止阀的阀座和阀瓣比较容易修理或更换密封元件时无需把整个阀门从管线上拆下来,这对于阀门和管线焊接成一体的场合是很适用的。 介质通过此类阀门时的流动方向发生了变化,因此截止阀的流动阻力较高于其它阀门。 常用的截止阀有以下几种:1)角式截止阀;在角式截止阀中,流体只需改变一次方向,以致于通过此阀门的压力降比常规结构的截止阀小。 2)直流式截止阀;在直流式或Y形截止阀中,阀体的流道与主流道成一斜线,这样流动状态的破坏程度比常规截止阀要小,因而通过阀门的压力损失也相应的小了。 3)柱塞式截止阀:这种形式的截止阀是常规截止阀的变型。 在该阀门中,阀瓣和阀座通常是基于柱塞原理设计的。 阀瓣磨光成柱塞与阀杆相连接,密封是由套在柱塞上的两个弹性密封圈实现的。 两个弹性密封圈用一个套环隔开,并通过由阀盖螺母施加在阀盖上的载荷把柱塞周围的密封圈压牢。 弹性密封圈能够更换,可以采用各种各样的材料制成,该阀门主要用于“开”或者“关”,但是备有特制形式的柱塞或特殊的套环,也可以用于调节流量。 蝶阀 蝶阀的蝶板安装于管道的直径方向。 在蝶阀阀体圆柱形通道内,圆盘形蝶板绕着轴线旋转,旋转角度为0°~90°之间,旋转到90°时,阀门则牌全开状态。 蝶阀结构简单、体积小、重量轻,只由少数几个零件组成。 而且只需旋转90°即可快速启闭,操作简单,同时该阀门具有良好的流体控制特性。 蝶阀处于完全开启位置时,蝶板厚度是介质流经阀体时唯一的阻力,因此通过该阀门所产生的压力降很小,故具有较好的流量控制特性。 蝶阀有弹密封和金属的密封两种密封型式。 弹性密封阀门,密封圈可以镶嵌在阀体上或附在蝶板周边。 采用金属密封的阀门一般比弹性密封的阀门寿命长,但很难做到完全密封。 金属密封能适应较高的工作温度,弹性密封则具有受温度限制的缺陷。 如果要求蝶阀作为流量控制使用,主要的是正确选择阀门的尺寸和类型。 蝶阀的结构原理尤其适合制作大口径阀门。 蝶阀不仅在石油、煤气、化工、水处理等一般工业上得到广泛应用,而且还应用于热电站的冷却水系统。 常用的蝶阀有对夹式蝶阀和法兰式蝶阀两种。 对夹式蝶阀是用双头螺栓将阀门连接在两管道法兰之间,法兰式蝶阀是阀门上带有法兰,用螺栓将阀门上两端法兰连接在管道法兰上。 球阀 球阀是由旋塞阀演变而来。 它具有相同的旋转90度提动作,不同的是旋塞体是球体,有圆形通孔或通道通过其轴线。 球面和通道口的比例应该是这样的,即当球旋转90度时,在进、出口处应全部呈现球面,从而截断流动。 球阀只需要用旋转90度的操作和很小的转动力矩就能关闭严密。 完全平等的阀体内腔为介质提供了阻力很小、直通的流道。 通常认为球阀最适宜直接做开闭使用,但近来的发展已将球阀设计成使它具有节流和控制流量之用。 球阀的主要特点是本身结构紧凑,易于操作和维修,适用于水、溶剂、酸和天然气等一般工作介质,而且还适用于工作条件恶劣的介质,如氧气、过氧化氢、甲烷和乙烯等。 球阀阀体可以是整体的,也可以是组合式的。 按防止介质倒流选用阀门 这种类型的阀门的作用是只允许介质向一个方向流动,而且阻止方向流动。 通常这种阀门是自动工作的,在一个方向流动的流体压力作用下,阀瓣打开;流体反方向流动时,由流体压力和阀瓣的自重合阀瓣作用于阀座,从而切断流动。 其中止回阀就属于这种类型的阀门,它包括旋启式止回阀和升降式止回阀。 旋启式止回阀有一介铰链机构,还有一个像门一样的阀瓣自由地靠在倾斜的阀座表面上。 为了确保阀瓣每次都能到达阀座面的合适位置,阀瓣设计在铰链机构,以便阀瓣具有足够有旋启空间,并使阀瓣真正的、全面的与阀座接触。 阀瓣可以全部用金属制成,也可以在金属上镶嵌皮革、橡胶、或者采用合成覆盖面,这取决于使用性能的要求。 旋启式止回阀在完全打开的状况下,流体压力几乎不受阻碍,因此通过阀门的压力降相对较小。 升降式止回阀的阀瓣座落位于阀体上阀座密封面上。 此阀门除了阀瓣可以自由地升降之外,其余部分如同截止阀一样,流体压力使阀瓣从阀座密封面上抬起,介质回流导致阀瓣回落到阀座上,并切断流动。 根据使用条件,阀瓣可以是全金属结构,也可以是在阀瓣架上镶嵌橡胶垫或橡胶环的形式。 像截止阀一样,流体通过升降式止回阀的通道也是狭窄的,因此通过升降式止回阀的压力降比旋启式止回阀大些,而且旋启式止回阀的流量受到的限制很少。 按调节介质参数选用阀门 在生产过程中,为了使介质的压力、流量等参数符合工艺流程的要求,需要安装调节机构对上述参数进行调节。 调节机构的主要工作原理,是靠改变阀门阀瓣与阀瓣与阀座间的流通面积,达到调节上述参数的目的。 属于这类阀门的统称为控制阀,其中分为依靠介质本身动力驱动的称为自驱式控制阀如减压阀、稳压阀等,凡领先上来动力驱动的(如电力 、压缩空气和液动力)称为他驱式控制阀,如电动调节阀、气动调节阀和液动调节阀等。 弹性金属硬密封蝶阀介绍 弹性金属密封蝶阀是国家级重点新产品,高性能的弹性金属密封蝶阀采用了一个双偏心和一个特殊斜锥椭圆密封结构。 解决了传统偏心蝶阀在启闭0°~10°瞬间密封面仍处于滑动接触摩擦的弊病,实现蝶板在开启瞬间密封面即分离,关闭接触即密封的效果,达到延长使用寿命、密封性能最佳的目的。 用途: 用于硫酸行业中气体管路:炉前鼓风机出入口,接力风机出入口,电除雾串联及联通阀,S02主鼓风机出入口,转化器调节,预热器出入口等调节和截止气量使用。 用于硫磺制酸系统中的焚硫、转化、干吸工段,是硫磺制酸装置用阀的首选品牌,被广大用户认为是:密封性能好,运转轻,副腐蚀,耐高温,操作方便、灵活、使用安全可靠的蝶阀,得到了大量推广使用。 还广泛用于:化工、石化、冶炼、医药、食品等行业中SO2、蒸汽、空气、煤气、氨气、CO2气、油品、水、盐水、碱液、海水、硝酸、盐酸、硫酸、磷酸等介质的管路上作为调节和截流装置使用。 结构特点: ①三向偏心的独特设计使密封面之间无摩擦传动,延长了阀门使用寿命。 ②由扭矩产生弹性密封。 ③巧妙的楔形设计使阀门有越关越紧的自动密封功能,密封面之间具有补偿性、零泄漏。 ④体积小、重量轻、操作轻巧、便于安装。 ⑤可根据用户要求配置气动、电动装置,满足遥控和程控的需要。 ⑥更换零件材质可适用于各种介质,并可进行衬里防腐(衬F46、GXPP、PO等)。 ⑦连续结构多样化:对夹、法兰、对焊。 参考资料:你也可以登陆海川化工论坛()的管道、阀门技术交流区里看看,那里的有各种阀门的图片,感官认识更强烈,但是必须先注册登陆才能看到,里面的东西挺多的

看不懂阀门的规格型号?急死人啦

GATE VALVE: 闸阀 CL.150: 压力等级CL150# 阀体材质: A182GR.F304, 即SS304锻不锈钢 304+HF: 不锈钢阀芯+硬化表面处理 RF:突面法兰连接 LBB: 长阀体阀盖连接 OS&Y: 带手轮支架 ASME B16.10/API 602/ASME B16.5: 阀门设计标准 HANDWHEEL: 带手轮

补偿器的特点 用途

一. 补偿器简介: 补偿器习惯上也叫膨胀节,或伸缩节。 由构成其工作主体的波纹管(一种弹性元件)和端管、支架、法兰、导管等附件组成。 属于一种补偿元件。 利用其工作主体波纹管的有效伸缩变形,以吸收管线、导管、容器等由热胀冷缩等原因而产生的尺寸变化,或补偿管线、导管、容器等的轴向、横向和角向位移。 也可用于降噪减振。 在现代工业中用途广泛。 二.补偿器作用: 补偿器也称伸缩器、膨胀节、波纹补偿器。 补偿器分为:波纹补偿器、套筒补偿器、旋转补偿器、方形自然补偿器等几大类型,其中以波纹补偿器较为常用,主要为保障管道安全运行,具有以下作用: 1.补偿吸收管道轴向、横向、角向热变形。 2. 波纹补偿器伸缩量,方便阀门管道的安装与拆卸。 3.吸收设备振动,减少设备振动对管道的影响。 4.吸收地震、地陷对管道的变形量。 三.关于轴向型、横向型和角向型补偿器对管系及管架设计的要求 (一)轴向型补偿器 1、安装轴向型补偿器的管段,在管道的盲端、弯头、变截面处,装有截止阀或减压阀的部们及侧支管线进入主管线入口处,都要设置主固定管架。 主固定管架要考虑波纹管静压推力及变形弹性力的作用。 推力计算公式如下: Fp=100*P*A Fp-补偿器轴向压力推(N), A-对应于波纹平均直径的有效面积(cm2), P-此管段管道最高压力(MPa)。 轴向弹性力的计算公式如下: Fx=f*Kx*X FX-补偿器轴向弹性力(N), KX-补偿器轴向刚度(N/mm); f-系数,当“预变形”(包括预变形量△X=0)时,f=1/2,否则f=1。 管道除上述部位外,可设置中间固定管架。 中间固定管架可不考虑压力推力的作用。 2、在管段的两个固定管架之间,仅能设置一个轴向型补偿器。 3、固定管架和导向管架的分布推荐按下图配置。 补偿器一端应靠近固定管架,若过长则要按第一导向架的设置要求设置导向架,其它导向架的最大间距可按下计算: LGmax-最大导向间距(m); E-管道材料弹性模量(N/cm2); i-tp 管道断面惯性矩(cm4); KX-补偿器轴向刚度(N/mm), X0-补偿额定位移量(mm)。 当补偿器压缩变形时,符号“+”,拉伸变形时,符合为“-”。 当管道壁厚按标准壁厚设计时,LGmax可按有关标准选取。 (二)横向型及角向型补偿器 1、装在管道弯头附近的横向型补偿器,两端各高一导向支座,其中一个宜是平面导向管座,其上、下活动间隙按下式计算: ε-活动间隙(mm); L-补偿器有效长度(mm); △Y-管段热膨胀量(mm); △X-不包括L长度在内的垂直管段的热膨胀量(mm); 2、角向型补偿器宜两个或三个为一组配套使用,用以吸收管道的横向位移,对Z形和L形管段两个固定管架之间,只允许安装一个横向型补偿器或一组角向型补偿器。 此时平面铰链销的轴线必须垂直于弯曲管段形成的平面(万向铰链补偿器不受此限制)。 装有一组铰链补偿器的管段,其平面导向架的间隙ε亦可按上式计算。 但是L长度应为两补偿器铰链轴之间的距离,△X是整个垂直管段的热膨胀量。 3、补偿器两侧的导向支座应接近补偿器,支座的型式应使补偿器能定向运动。 三.供热管道直埋式补偿器安装要求 (一)用途: 直埋式波纹补偿器主要用于直埋管线的轴向补偿,具有抗弯能力,所以可不考虑管道下沉的影响,产品具有补偿量大,寿命长的特点。 (二)使用说明: 直埋式波纹补偿器主要适用于轴向补偿,同时具有超强抗弯能力,所以不考虑管道下沉的影响。 直埋式波纹补偿外壳及导向套筒保护下实现自由伸缩补偿,其它性能跟普通波纹补偿器相同。 (三)选用与安装: 3.1管道最大安装长度计算 有补偿直埋的管道应在二处高固定点,一是在直管段的端部,二是在管道的分支处。 长的无分支的直线管道两补偿器之间可以不设固定点,靠管道自然形成的“驻点”即可发挥固定点的作用。 驻点是两补偿器之间管道的那个不动点,在管径相同,埋深一致时,驻点与两补偿器间的距离相等。 褡补偿器(包括转角处自然补偿器)至固定点之间的距离不得超过管道的最大安装长度Lmax,管道最大安装长度的定义是固定点至自由端(补偿器)的长度,在此长度下产生的摩擦力不得超过管道许用应力下相应的弹性力。 Lmax按下式计算: 常用管道的最大安装长度Lmax。 应考虑16kgf/cm2内压力所产生的环向应力的综合影响。 3.2固定支座的设计计算 具有2个管道分支并在主干线上有一处转角管道平面,补偿器的布置应满足Ln<Lmax的条件。 驻点G1、G2的推力为零,所以,此点处不必设置固定支座,但为了防止回填土的不均匀,埋深的不一致和预制保温管外壳粗糙度的不规则等可能会造成驻点的漂移,所以,对处于驻点位置的管道分支处G1、G2需设置支座,以G1为例其轴向推力可按下式计算: F1=Pb2+L2f-0.8(Pb3+L2f) 式中F1-固定支座G1的水平推力,kgf; f-管道单位长度摩擦力,Kgf/m Pb2-B2膨胀节的弹性力,Kg; Pb3-B3膨胀节的弹性力,Kgf k2-B2膨胀节的刚度,Kgf/mm; △L2-B2膨胀节的补偿量,mm; L2-膨胀节至G1的距离,m; 假如某一分支如自G2接出的分支带有补偿器B。 那么,G2还受到一侧向推力的作用,如图中的F2(y),当L5很短(实际布置时L5也应很短),那么,侧向力F2(y)的大小为: F2(y)=Pn*A5+Pb5 式中Pn-管道工作压力,Kgf/cm2 A5-B5膨胀节的有效面积,cm2; Pb5-B5膨胀节的弹性力kgf。 固定支座G3也驻点位置,从管道和土壤的摩擦力来讲,该点也受到大小相等,方向相反的两个时作用,但应注意到该点同时又受到转角处的盲板力的作用,考虑驻点漂移的影响,固定支座G3的推力 F3=1.2Pn*A4 式中F3-作用在固定支座G3的水平推力,Kgf; Pn-管道工作压力,Kgf/cm2; A4-B4膨胀节的有效面积,cm2。 3.3补偿器的选用计算 直埋管道由于土壤摩擦力的影响,实际热伸长量要比架空和地沟敷设的管道热热伸长量要小。 架空和地沟敷设时的伸长量:α·△t·L 直埋敷设时,因土壤摩擦力影响的热伸长减少量: 实际热伸长量为: 式中E-钢管弹性模理,kgf/cm2; α-钢管的线膨胀系数,取0.0133mm/m℃; △t-管道温差; A、f-同公式①; L-两固定点之间的距离(最大安装长度)m。 在实际工作中,直埋管道的热伸长量,采用丹麦摩勒公司的简化算法。 式中符号同以上公式相同。 按②或③式计算出实际热伸长量后,按系列表选用相应的补偿器。 3.4安装 直埋式膨胀节(不包括一次性直埋式)安装时应有两个后年度护圈(如下图),且护圈的壁厚不应小于管道的壁厚,设置护圈1的目的是为管道受热膨胀时,A尺寸范围内有土、砂等进入,图中的各尺寸为: 直埋式波纹补偿器出厂时,所有外露表面已刷防锈漆两遍,直埋式波纹补偿器及其直埋管道的其它要求为: (1)保温管埋于地下时,四周需用粒度小于20毫米的砂子填充,然后再覆盖原土,填充砂子的厚度不小于200毫米。 (2)保温管顶的埋深一般不超过1.2米,但也尽量不要小于0.7米,,保温管可直接埋在各种管道下面。 (3)如图,除A处外,其余均保温,因管道膨胀时A处不保温并不会造成显著的热损失。 也是由于护圈的作用,直埋补偿器可以直埋处于车行道下面。 (4)直埋式补偿器安装不必冷紧,也不必按全线钢管接好后再割下和膨胀节等长管道之后再焊接的方法。 使用直埋型膨胀节,不必设导向支架。 (5)安装时要注意保证导流套筒的方向与流动方向的一致。 (6)补偿器内介质应进行除游离氧和除氯离子处理,氯离子含量不得超过25PPm。 (7)补偿器允许不超过1.5倍公称压力的系统水压试验。 (8)补偿器安装完毕进行系统水压试验前,要将管道两端固定,防止内压推力拉伸补偿器。 四.补偿器安装和使用要求 1、补偿器在安装前应先检查其型号、规格及管道配置情况,必须符合设计要求。 2、对带内套筒的补偿器应注意使内套筒子的方向与介质流动方向一致,铰链型补偿器的铰链转动平面应与位移转动平面一致。 3、需要进行“冷紧”的补偿器,预变形所用的辅助构件应在管路安装完毕后方可拆除。 4、严禁用波纹补偿器变形的方法来调整管道的安装超差,以免影响补偿器的正常功能、降低使用寿命及增加管系、设备、支承构件的载荷。 5、安装过程中,不允许焊渣飞溅到波壳表面,不允许波壳受到其它机械损伤。 6、管系安装完毕后,应尽快拆除波纹补偿器上用作安装运输的黄色辅助定位构件及紧固件,并按设计要求将限位装置调到规定位置,使管系在环境条件下有充分的补偿能力。 7、补偿器所有活动元件不得被外部构件卡死或限制其活动范围,应保证各活动部位的正常动作。 8、水压试验时,应对装有补偿器管路端部的次固定管架进行加固,使管路不发生移动或转动。 对用于气体介质的补偿器及其连接管路,要注意充水时是否需要增设临时支架。 水压试验用水清洗液的96氯离子含量不超过25PPM。 9、水压试验结束后,应尽快排波壳中的积水,并迅速将波壳内表面吹干。 10、与补偿器波纹管接触的保温材料应不含氯离子

本文版权声明本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请联系本站客服,一经查实,本站将立刻删除。

发表评论

热门推荐