linux 进程内存结构原理及特点
Linux 进程内存结构是具有一定特点及原理的。一般说来,Linux 进程的内存结构包括代码段,数据段和堆和栈四个部分, 其中代码段用来保存程序的代码指令,数据段用来保存数据及全局变量,堆和栈则用来保存函数调用过程中临时变量。
首先,代码段保存的是程序代码,它不会被系统递增或者减少,它可以是可执行文件的直接拷贝,也可以是连接对象文件的集合,比如 C 程序中的 .text 段。可执行文件的代码段会随着进程的创建而被拷贝到内存中,Linux 内核会将所有的代码段的虚拟地址映射到物理内存的不同位置,一个进程所需要的物理内存空间则与它的虚拟地址空间大小有关,通常情况下一个可执行文件的代码段都与物理地址同步。

接着,数据段保存的是程序的全局变量及数值,它也可以是可执行文件中的.data段或者连接对象文件中的.bss 段,该段会在进程被创建时被拷贝到内存,由内核映射虚拟内存中的该段到物理内存上,但这种段可以随着程序的运行而改变,比如说对于一个变量的值的改变,在 Linux 系统中,程序运行期间,数据段会被拆分成数块,每一块都会按照需要与物理内存进行匹配。
最后,堆和栈是临时的分配地址,它们是放在最上面的。堆是用来分配和释放内存的,用户进程可以请求堆区域的内存,并在用完之后将其释放,而栈则用来保存函数调用及参数传递和返回值。在 Linux 系统中,栈从一定的地址开始,一直增大到一定阈值,它们一般是固定的,每当堆/栈被创建时,系统会动态的调整堆/栈的范围,从而根据应用程序需要来适合的分配空间。
以上就是 Linux 进程内存结构的原理及其特点,他们是进程正确执行所必需的,其作用是让进程能正常执行,而不是让他们拥有更多资源,其实现原理也相当简单,因此,Linux 进程执行时都会具有如此严格的内存结构。
香港服务器首选树叶云,2H2G首月10元开通。树叶云(shuyeidc.com)提供简单好用,价格厚道的香港/美国云 服务器 和独立服务器。IDC+ISP+ICP资质。ARIN和APNIC会员。成熟技术团队15年行业经验。
linux的内核运行原理是怎么样的呢?如何从开机,到加载内核镜像到内存?
当PC启动时,Intel系列的CPU首先进入的是实模式,并开始执行位于地址0xFFFF0处的代码,也就是ROM-BIOS起始位置的代码。 BIOS先进行一系列的系统自检,然后初始化位于地址0的中断向量表。 最后BIOS将启动盘的第一个扇区装入到0x7C00,并开始执行此处的代码。 这就是对内核初始化过程的一个最简单的描述。 最初,linux核心的最开始部分是用8086汇编语言编写的。 当开始运行时,核心将自己装入到绝对地址0x,再将其后的2k字节装入到地址0x处,最后将核心的其余部分装入到0x。 当系统装入时,会显示Loading...信息。 装入完成后,控制转向另一个实模式下的汇编语言代码boot/Setup.S。 Setup部分首先设置一些系统的硬件设备,然后将核心从0x处移至0x1000处。 这时系统转入保护模式,开始执行位于0x1000处的代码。 接下来是内核的解压缩。 0x1000处的代码来自于文件Boot/head.S,它用来初始化寄存器和调用decompress_kernel( )程序。 decompress_kernel( )程序由Boot/inflate.c,Boot/unzip.c和Boot../misc.c组成。 解压缩后的数据被装入到了0x处,这也是linux不能在内存小于2M的环境下运行的主要原因。 解压后的代码在0x处开始执行,紧接着所有的32位的设置都将完成: IDT、GDT和LDT将被装入,处理器初始化完毕,设置好内存页面,最终调用start_kernel过程。 这大概是整个内核中最为复杂的部分。 [系统开始运行]linux kernel 最早的C代码从汇编标记startup_32开始执行startup_32:start_kernellock_kerneltrap_initinit_IRQsched_initsoftirq_inittime_initconsole_init#ifdef CONFIG_MODULESinit_modules#endifkmem_cache_initsticalibrate_delaymem_initkmem_cache_sizes_initpgtable_cache_initfork_initProc_caches_initvfs_caches_initbuffer_initpage_cache_initsignals_init#ifdef CONFIG_PROC_FSproc_root_init#endif#if defined(CONFIG_SYSVIPC)ipc_init#endifcheck_BUGssmp_initrest_initkernel_threadunlock_kernelcpu_idle・startup_32 [arch/i386/kernel/head.S]・start_kernel [init/main.c]・lock_kernel [include/asm/smplock.h]・trap_init [arch/i386/kernel/traps.c]・init_IRQ [arch/i386/kernel/i8259.c]・sched_init [kernel/sched.c]・softirq_init [kernel/softirq.c]・time_init [arch/i386/kernel/time.c]・console_init [drivers/char/tty_io.c]・init_modules [kernel/module.c]・kmem_cache_init [mm/slab.c]・sti [include/asm/system.h]・calibrate_delay [init/main.c]・mem_init [arch/i386/mm/init.c]・kmem_cache_sizes_init [mm/slab.c]・pgtable_cache_init [arch/i386/mm/init.c]・fork_init [kernel/fork.c]・proc_caches_init・vfs_caches_init [fs/dcache.c]・buffer_init [fs/buffer.c]・page_cache_init [mm/filemap.c]・signals_init [kernel/signal.c]・proc_root_init [fs/proc/root.c]・ipc_init [ipc/util.c]・check_bugs [include/asm/bugs.h]・smp_init [init/main.c]・rest_init・kernel_thread [arch/i386/kernel/process.c]・unlock_kernel [include/asm/smplock.h]・cpu_idle [arch/i386/kernel/process.c]start_kernel( )程序用于初始化系统内核的各个部分,包括:*设置内存边界,调用paging_init( )初始化内存页面。 *初始化陷阱,中断通道和调度。 *对命令行进行语法分析。 *初始化设备驱动程序和磁盘缓冲区。 *校对延迟循环。 最后的functionrest_init 作了以下工作:・开辟内核线程init・调用unlock_kernel・建立内核运行的cpu_idle环, 如果没有调度,就一直死循环实际上start_kernel永远不能终止.它会无穷地循环执行cpu_idle.最后,系统核心转向move_to_user_mode( ),以便创建初始化进程(init)。 此后,进程0开始进入无限循环。 初始化进程开始执行/etc/init、/bin/init 或/sbin /init中的一个之后,系统内核就不再对程序进行直接控制了。 之后系统内核的作用主要是给进程提供系统调用,以及提供异步中断事件的处理。 多任务机制已经建立起来,并开始处理多个用户的登录和fork( )创建的进程。 [init]init是第一个进程,或者说内核线程initlock_kerneldo_basic_setupmtrr_initsysctl_initpci_initsock_initstart_context_threaddo_init_calls(*call())-> kswapd_initprepare_namespacefree_initmemunlock_kernelexecve[目录]--------------------------------------------------------------------------------启动步骤系统引导:涉及的文件./arch/$ARCH/boot/bootsect.s./arch/$ARCH/boot/.S这个程序是linux kernel的第一个程序,包括了linux自己的bootstrap程序,但是在说明这个程序前,必须先说明一般IBM PC开机时的动作(此处的开机是指打开PC的电源):一般PC在电源一开时,是由内存中地址FFFF:0000开始执行(这个地址一定在ROM BIOS中,ROM BIOS一般是在FEOOOh到FFFFFh中),而此处的内容则是一个jump指令,jump到另一个位於ROM BIOS中的位置,开始执行一系列的动作,包括了检查RAM,keyboard,显示器,软硬磁盘等等,这些动作是由系统测试代码(system test code)来执行的,随着制作BIOS厂商的不同而会有些许差异,但都是大同小异,读者可自行观察自家机器开机时,萤幕上所显示的检查讯息。 紧接着系统测试码之后,控制权会转移给ROM中的启动程序(ROM bootstrap routine),这个程序会将磁盘上的第零轨第零扇区读入内存中(这就是一般所谓的boot sector,如果你曾接触过电脑病毒,就大概听过它的大名),至於被读到内存的哪里呢? --绝对位置07C0:0000(即07C00h处),这是IBM系列PC的特性。 而位在linux开机磁盘的boot sector上的正是linux的bootsect程序,也就是说,bootsect是第一个被读入内存中并执行的程序。 现在,我们可以开始来看看到底bootsect做了什么。 第一步首先,bootsect将它自己从被ROM BIOS载入的绝对地址0x7C00处搬到0x处,然后利用一个jmpi(jump indirectly)的指令,跳到新位置的jmpi的下一行去执行,第二步接着,将其他segment registers包括DS,ES,SS都指向0x9000这个位置,与CS看齐。 另外将SP及DX指向一任意位移地址( offset ),这个地址等一下会用来存放磁盘参数表(disk para- meter table )第三步接着利用BIOS中断服务int 13h的第0号功能,重置磁盘控制器,使得刚才的设定发挥功能。 第四步完成重置磁盘控制器之后,bootsect就从磁盘上读入紧邻着bootsect的setup程序,也就是setup.S,此读入动作是利用BIOS中断服务int 13h的第2号功能。 setup的image将会读入至程序所指定的内存绝对地址0x处,也就是在内存中紧邻着bootsect 所在的位置。 待setup的image读入内存后,利用BIOS中断服务int 13h的第8号功能读取目前磁盘的参数。 第五步再来,就要读入真正linux的kernel了,也就是你可以在linux的根目录下看到的vmlinuz 。 在读入前,将会先呼叫BIOS中断服务int 10h 的第3号功能,读取游标位置,之后再呼叫BIOS 中断服务int 10h的第13h号功能,在萤幕上输出字串Loading,这个字串在boot linux时都会首先被看到,相信大家应该觉得很眼熟吧。 第六步接下来做的事是检查root device,之后就仿照一开始的方法,利用indirectjump 跳至刚刚已读入的setup部份第七步setup.S完成在实模式下版本检查,并将硬盘,鼠标,内存参数写入到 INITSEG中,并负责进入保护模式。 第八步操作系统的初始化。
linux用户级进程跟内核线程(进程)有什么差别
1、几乎所有的程序都要切换到内核态运行再返回用户态,用中断完成的,因为在内核下封装了一些东西,用户态下只是传入某些参数后调用内核态下的函数罢了,2、进程有三态(执行态,就绪态,阻塞态),cpu任何时刻都只有一个进程在执行,so从用户态切换到内核态时,用户态下的进程就处于阻塞或就绪态了,至于从用户态切换到内核态执行哪个函数那就看你在用户态下执行的是什么函数了,比如在用户态下的lseek在内核下就是llseek了,不一样的。3、这问题就是linux的内存管理了,这里就得提到三种地址(逻辑地址、线性地址、物理地址),这里我们提到的4G地址是逻辑地址,不是我们实际的物理地址,linux中一个进程用户占0-3G对应的内核占3G-4G部分说得不是很清楚,这是比较复杂的内容,需要从头看起,单就这几个问题是不能搞懂linux的,最好还是系统的学习,不断的重复
Linux进程堆的默认大小是多少
1、通过命令 ulimit -s 查看linux的默认栈空间大小,默认情况下 为 即10M2、通过命令 ulimit -s 设置大小值 临时改变栈空间大小:ulimit -s , 即修改为100M
发表评论