多云和边缘计算存储的10个关键问题
2018-12-14 10:52:15在深入探讨多云和边缘存储争议之前,首席信息官和其他IT决策者应该询问自己一系列重要问题。由于数据管理是存储的核心,因此数据收集、传输和保留只是需要考虑的多方面事项的一部分。
将边缘和云计算与数据存储相结合充满了复杂性。幸运的是,有一些步骤可以帮助避免存储管理灾难。
管理企业存储可能是一个复杂且资源密集的过程。更具挑战性的是采用多云环境使复杂性增加了10倍。如果将边缘计算存储添加到其组合中,其管理可能会变成IT团队的噩梦,分布在多个平台和地理位置的数据将从四面八方涌入。
在深入探讨多云和边缘存储争议之前,***信息官和其他IT决策者应该询问自己一系列重要问题。由于数据管理是存储的核心,因此数据收集、传输和保留只是需要考虑的多方面事项的一部分。
1.数据将在何处生成和收集?
在多云/边缘计算存储环境中,数据可以由用户、应用程序或设备生成,并且源自台式机、笔记本电脑、智能手机、物联网监视器或其他系统。在某些情况下,数据在其生成位置附近收集,并通常会在其他位置发送。例如,销售代表可能使用移动应用程序向云计算服务上托管的Web应用程序提交订单,并收集和存储数据。将这些数据与布满物联网传感器的制造工厂的数据相比较,这些传感器将数据发送到附近的边缘计算系统,以便实时临时存储和分析。
2.将生成什么类型的数据以及生成多少数据?
在不知道预期的数据类型和数量的情况下,IT团队无法为多云/边缘环境规划存储。它是结构化的、半结构化的还是非结构化的?它将包括视频文件、图形文件还是文字处理文件?那么数据量呢?无论数据在何处生成或收集,团队都必须知道短期和长期会有多少数据和什么类型的数据。他们还必须能够考虑可能影响存储的任何机制,例如巨型文件或重复数据删除进程。
3.将保留哪些数据以及保留多长时间?
在许多情况下,收集数据时期望***期地保留或至少保留很长时间。但是,在某些情况下,只需要保留部分数据或只在短时间内保留数据。例如,在边缘计算系统上收集的物联网数据可能需要足够长的时间来执行必要的分析。在此之后,可以丢弃原始数据,同时保留分析结果。
4.将传输哪些数据以及传输多少数据?
并非所有收集的数据都必须移动到另一个平台。在某些情况下,只需移动一部分数据,或仅移动以某种其他方式聚合、清理或转换的数据,甚至可能不需要移动任何数据。这很大程度上取决于数据收集后的处理和分析。IT团队必须能够为收集的数据和传输的数据进行规划存储,这需要完全了解需要移动的数据的类型和数量,以及将要保留或删除哪些数据。
5.何时传输数据以及传输的次数?
IT部门还必须知道何时传输数据以及如何执行这些传输。这涉及将数据从一个平台移动到另一个平台的基本调度。例如,可能需要定期将数据从数据中心复制到云平台,或者从一个云平台移动到另一个云平台。存储要求可能因转移计划和所涉及的数据量而异。IT团队还必须考虑在存储可能受到影响的情况下,数据是以单向还是双向方式在平台之间移动。
6.传输的数据将存储在何处以及存储多长时间?
在多云/边缘计算存储环境中,数据可能是从边缘系统移动到云平台,从云平台移动到数据中心,从数据中心移动到云平台,或这三者的任何组合。IT团队必须清楚地了解从每个端点到每个目的地的数据流向,知道传输哪些数据,有多少数据以及何时移动数据。无论是在云平台上,在私有数据中心,还是在其他地方,IT部门还必须了解数据的托管位置以及数据的存储时间。
7.如何管理和存储数据?
数据管理包括移动和存储数据。规划人员应确定将使用哪些工具来传输数据以及流程自动化的程度。他们还应该确定如何编排数据移动以及如何存储数据。各种工具和流程可以对存储产生直接和间接影响。例如,根据执行的数据转换类型,可能需要暂存区域来临时托管数据,可能需要大量存储设备。此外,数据库管理系统和NoSQL数据存储等解决方案都有自己的存储要求。
8.如何执行和实施灾难恢复?
在规划多云环境的存储时,IT团队必须考虑如何实施灾难恢复(DR)策略。备份数据或维护冗余数据等过程通常会转化为额外的存储要求。如果团队还必须将边缘系统整合到他们的环境中,他们的灾难恢复(DR)策略可能会变得更加复杂,特别是边缘计算系统数量的增加。例如,如果其中一个系统发生故障,会发生什么?故障转移是如何发生的?工作负载在哪里重定向?每个边缘计算系统是否需要有自己的灾难恢复计划?所有这些变量都会影响IT计划支持有效灾难恢复(DR)策略所需的存储方式。
9.如何整合结构和工作流程变更?
组织采用多云策略,因为可以提高灵活性,同时在异构环境中提供更大的移动性。当边缘计算存储系统添加到组合中时,这种灵活性和移动性可能受到威胁,除非IT团队准备处理诸如添加和删除云计算服务,在平台之间迁移的工作负载或集成到结构中的新边缘系统之类的变化。为了长期正确规划存储,IT团队需要了解如何管理边缘集成以及如何在整个多云/边缘计算环境中解决不断变化的条件。
10. 安全性和合规性要求是什么?
多云环境带来的挑战之一是确保数据安全,并且保护隐私,无论数据驻留位置或移动方式如何。同时,多云存储环境可以更容易满足合规性要求,因为它具有固有的灵活性。然而,边缘计算存储无论在什么情况下都会使问题复杂化,特别是涉及物联网设备时。IT团队必须采取一切可能的预防措施,以确保数据不会受到损害,并且无论数据驻留在何处或如何从一个平台移动到下一个平台,组织都需要满足其所有遵从性要求。

求2010数学一考研大纲~~本人2011考研(计算机科学与技术专业)
2010数一与2009数一相比 无变化 2009年考研数学大纲内容 数一高等数学 一、函数、极限、连续 考试内容 函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限: , 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 考试要求 1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系. 2.了解函数的有界性、单调性、周期性和奇偶性. 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4.掌握基本初等函数的性质及其图形,了解初等函数的概念. 5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系. 6.掌握极限的性质及四则运算法则. 7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法. 8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限. 9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. 10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质. 二、一元函数微分学 考试内容 导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(LHospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值和最小值 弧微分 曲率的概念 曲率圆与曲率半径 考试要求 1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系. 2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分. 3.了解高阶导数的概念,会求简单函数的高阶导数. 4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数. 5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理. 6.掌握用洛必达法则求未定式极限的方法. 7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用. 8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数。 当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形. 9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径. 三、一元函数积分学 考试内容 原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿一莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用 考试要求 1.理解原函数的概念,理解不定积分和定积分的概念. 2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法. 3.会求有理函数、三角函数有理式和简单无理函数的积分. 4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式. 5.了解反常积分的概念,会计算反常积分. 6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值. 四、向量代数和空间解析几何 考试内容 向量的概念 向量的线性运算 向量的数量积和向量积 向量的混合积 两向量垂直、平行的条件 两向量的夹角 向量的坐标表达式及其运算 单位向量 方向数与方向余弦 曲面方程和空间曲线方程的概念 平面方程、直线方程 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件 点到平面和点到直线的距离 球面 柱面 旋转曲面 常用的二次曲面方程及其图形 空间曲线的参数方程和一般方程 空间曲线在坐标面上的投影曲线方程 考试要求 1.理解空间直角坐标系,理解向量的概念及其表示. 2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件. 3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法. 4.掌握平面方程和直线方程及其求法. 5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题. 6.会求点到直线以及点到平面的距离. 7.了解曲面方程和空间曲线方程的概念. 8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程. 9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程. 五、多元函数微分学 考试内容 多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上多元连续函数的性质 多元函数的偏导数和全微分 全微分存在的必要条件和充分条件 多元复合函数、隐函数的求导法 二阶偏导数 方向导数和梯度 空间曲线的切线和法平面 曲面的切平面和法线 二元函数的二阶泰勒公式 多元函数的极值和条件极值 多元函数的最大值、最小值及其简单应用 考试要求 1.理解多元函数的概念,理解二元函数的几何意义. 2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质. 3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性. 4.理解方向导数与梯度的概念,并掌握其计算方法. 5.掌握多元复合函数一阶、二阶偏导数的求法. 6.了解隐函数存在定理,会求多元隐函数的偏导数. 7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程. 8.了解二元函数的二阶泰勒公式. 9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题. 六、多元函数积分学 考试内容 二重积分与三重积分的概念、性质、计算和应用 两类曲线积分的概念、性质及计算 两类曲线积分的关系 格林(Green)公式 平面曲线积分与路径无关的条件 二元函数全微分的原函数 两类曲面积分的概念、性质及计算 两类曲面积分的关系 高斯(Gauss)公式 斯托克斯(Stokes)公式 散度、旋度的概念及计算 曲线积分和曲面积分的应用 考试要求 1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理. 2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标). 3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系. 4.掌握计算两类曲线积分的方法. 5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数. 6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分. 7.了解散度与旋度的概念,并会计算. 8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、、形心、转动惯量、引力、功及流量等). 七、无穷级数 考试内容 常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与 级数及其收敛性 正项级数收敛性的判别法 交错级数与莱布尼茨定理 任意项级数的绝对收敛与条件收敛 函数项级数的收敛域与和函数的概念 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式 函数的傅里叶(Fourier)系数与傅里叶级数 狄利克雷(Dirichlet)定理 函数在 上的傅里叶级数 函数在 上的正弦级数和余弦级数 考试要求 1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件. 2.掌握几何级数与 级数的收敛与发散的条件. 3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法. 4.掌握交错级数的莱布尼茨判别法. 5. 了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系. 6.了解函数项级数的收敛域及和函数的概念. 7.理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法. 8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和. 9.了解函数展开为泰勒级数的充分必要条件. 10.掌握 、 、 、 及 的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开成幂级数. 11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在 上的函数展开为傅里叶级数,会将定义在 上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式. 八、常微分方程 考试内容 常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 伯努利(Bernoulli)方程 全微分方程 可用简单的变量代换求解的某些微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 欧拉(Euler)方程 微分方程的简单应用 考试要求 1.了解微分方程及其阶、解、通解、初始条件和特解等概念. 2.掌握变量可分离的微分方程及一阶线性微分方程的解法. 3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程 4.会用降阶法解下列形式的微分方程: . 5.理解线性微分方程解的性质及解的结构. 6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程. 7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程. 8.会解欧拉方程. 9.会用微分方程解决一些简单的应用问题. 线性代数 一、行列式 考试内容行列式的概念和基本性质 行列式按行(列)展开定理 考试要求 1.了解行列式的概念,掌握行列式的性质. 2.会应用行列式的性质和行列式按行(列)展开定理计算行列式. 二、矩阵 考试内容矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算 考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,以及它们的性质. 2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质. 3.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵. 4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法. 5.了解分块矩阵及其运算. 三、向量 考试内容 向量的概念 向量的线性组合与线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量空间及其相关概念 维向量空间的基变换和坐标变换 过渡矩阵 向量的内积 线性无关向量组的正交规范化方法 规范正交基 正交矩阵及其性质 考试要求 1.理解 维向量、向量的线性组合与线性表示的概念. 2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法. 3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩 4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系. 5.了解 维向量空间、子空间、基底、维数、坐标等概念. 6.了解基变换和坐标变换公式,会求过渡矩阵. 7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法. 8.了解规范正交基、正交矩阵的概念以及它们的性质. 四、线性方程组 考试内容: 线性方程组的克莱姆(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 解空间 非齐次线性方程组的通解 考试要求 l.会用克莱姆法则. 2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件. 3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法. 4.理解非齐次线性方程组解的结构及通解的概念. 5.掌握用初等行变换求解线性方程组的方法. 五、矩阵的特征值和特征向量 考试内容: 矩阵的特征值和特征向量的概念、性质 相似变换、相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及其相似对角矩阵 考试要求: 1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量. 2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法. 3.掌握实对称矩阵的特征值和特征向量的性质. 六、二次型 考试内容二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性 考试要求 1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理. 2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形. 3.理解正定二次型、正定矩阵的概念,并掌握其判别法. 概率论与数理统计 一、随机事件和概率 考试内容 随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验 考试要求 1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算. 2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式. 3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法. 二、随机变量及其分布 考试内容 随机变量 随机变量分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布 考试要求 1.理解随机变量的概念,理解分布函数 的概念及性质,会计算与随机变量相联系的事件的概率. 2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布 、几何分布、超几何分布、泊松(Poisson)分布 及其应用. 3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布. 4.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布 、指数分布及其应用,其中参数为 的指数分布 的概率密度为 5.会求随机变量函数的分布. 三、多维随机变量及其分布 考试内容 多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布 考试要求 1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质. 理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率. 2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件. 3.掌握二维均匀分布,了解二维正态分布 的概率密度,理解其中参数的概率意义. 4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布. 四、随机变量的数字特征 考试内容 随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 矩、协方差、相关系数及其性质 考试要求 1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征 2.会求随机变量函数的数学期望. 五、大数定律和中心极限定理 考试内容 切比雪夫(Chebyshev)不等式 切比雪夫大数定律 伯努利(Bernoulli)大数定律 辛钦(Khinchine)大数定律 棣莫弗-拉普拉斯(De Moivre-laplace)定理 列维-林德伯格(Levy-Lindberg)定理 考试要求 1.了解切比雪夫不等式. 2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律) . 3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理) . 六、数理统计的基本概念 考试内容 总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 分布 分布 分布 分位数 正态总体的常用抽样分布 考试要求 1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为: 2.了解 分布、 分布和 分布的概念及性质,了解上侧 分位数的概念并会查表计算. 3.了解正态总体的常用抽样分布. 七、参数估计 考试内容 点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准 区间估计的概念 单个正态总体的均值和方差的区间估计 两个正态总体的均值差和方差比的区间估计 考试要求 1.理解参数的点估计、估计量与估计值的概念. 2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法. 3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性. 4.理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间. 八、假设检验 考试内容 显著性检验 假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验 考试要求 1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误. 2.掌握单个及两个正态总体的均值和方差的假设检验.49回答者: yyf5100 - 举人 四级 2009-4-2 11:44 我来评论>>相关内容 • 急求09年考研数学一大纲,不是解析对比之类的,拜托... • 09年考研数学一的大纲什么时候出? • 谁有09年数学一考研大纲解析 • 09年数学一的考研大纲哪有? • 09年考研数学考试大纲解析就数学一和数学二适用,那...更多关于2009考研数学一大纲的问题>> 其他回答 共 3 条 2009年考研数学大纲内容 数一 高等数学 一、函数、极限、连续 考试内容 函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限: , 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质. 二、一元函数微分学 考试内容 导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数一阶微分形式的不变性 微分中值定理 洛必达(L’Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值和最小值 弧微分 曲率的概念 曲率圆与曲率半径 考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数 具有二阶导数。 当 时, 的图形是凹的;当 时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径. 三、一元函数积分学 考试内容 原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿一莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用 考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.
俞灏明博客里的歌是什么
俞灏明博客里面共有20首歌曲 分别是 yours ----Jason Mraz 2.拥抱(粤语)----俞灏明 3.为你唱的歌 4,我没那么帅 5.多云转晴 6.要多美丽有多美丽 7,拥抱 Eyes 9.一个人的浪漫 10.(Another song) All over again ----Justin Timberlake The End Of Time ----Justin Timberlake I Were A Boy ----Beyonce Love It From Here ----Justin Timberlake Start From Here ---王若琳 16.迷宫 --王若琳 Love Begins To Mend ----王若琳 18.因为你爱我 --王若琳 19.陷入爱里面(with 简美妍) 20.如果可以爱你
怎样学好化学
如何学好高中化学欧伟婵老师 化学是一门很有魅力的学科。 但由于高中化学具有“繁,难,乱”的特点,所以不少同学对学习高中化学感到困难。 那么如何才能学好高中化学呢?一、认真听课,做好笔记。 好的笔记是教科书知识的浓缩、补充和深化,是思维过程的展现与提炼。 由于化学学科知识点既多又零碎、分散,所以,课堂上除了认真听课,积极思考外,还要在理解的基础上,用自己的语言记下老师讲的重点、难点知识,以及思路和疑难点,便于今后复习。 二、及时复习。 复习并不仅仅是对知识的简单回顾,而是在自己的大脑中考虑新旧知识的相互联系,并进行重整,形成新的知识体系。 所以,课后要及时对听课内容进行复习,做好知识的整理和归纳,这样才能使知识融会贯通,避免出现越学越乱的现象。 比如学习了SO2的漂白性就跟氯水的漂白性进行比较,找出两者的不同之处。 三、学会巧记由于要记的化学知识点比较多,如果靠死记硬背是难以记牢的,所以应学会巧记。 化学上常用的记忆方法有:比较法(常用于容易混淆、相互干扰的知识。 如同位素、同素异形体、同系物、同分异构体四个相似的概念,可以通过比较,使理解加深,记忆牢固。 )、归纳法、歌诀记忆法、理解记忆法和实验记忆法。 四、勤练练习是理解消化巩固课堂知识的重要途径。 但练习要有针对性,不能搞题海战术,应以掌握基本方法和解题规律为目标。 在解题过程中,要注意一题多解和归纳总结,这样才能达到做一题会一类的效果。 如化学计算中常用的技巧法有:守恒法、关系式法、极值法、平均值法、估算法、差量法等。 五、备好“错题本”做题的目的是培养能力、寻找自己的弱点和不足的有效途径。 所以,对平时出现的错题,应做好修正并记录下来。 记录时应详细分析出错的原因及正确的解题思路,不要简单写上一个答案了事。 同时,要经常翻阅复习,这样就可以避免以后出现类似的错误。 六、重视化学实验化学实验不但能培养学生观察、思维、动手等能力,还能加深对相关知识的认识和理解,所以必须重视化学实验。 平时做实验,要多问几个为什么,思考如何做,为什么要这样做,还可以怎样做,从而达到“知其然,也知其所以然”的目的。 此外,要把化学学好,还要多关注与化学有关的社会热点问题和生活问题,善于把书本知识与实际结合起来。 总之,只要学习方法正确,相信同学们会轻松地把化学学好的
发表评论