一种符合工控系统-特性的安全防御体系设计-四高

教程大全 2025-07-21 08:42:18 浏览

​1.​​工业控制网络的特殊安全需求

工业控制网络(后简称工控网络)不同于普通信息网络,其核心任务是保障生产操作指令运行畅通、持续有效,并在确保生产指令、生产要素、生产活动得以依托网络快速展开,在生产链路的全时贯通、操作信息的全时受控、生产系统的连续运行、控制体系的安全可靠等方面有着很高的要求。这些特征导致工业控制网络的安全防护体系设计有其特殊性。现阶段主要是采取把传统IT安全保护技术迁移到工控网络的方法,但这并不能很好地满足工控信息体系安全需求。其特殊性主要体现在以下3个方面:

一是安全防御以生产业务优先作为首要原则。在信息网络的安全保护中,主要关注的是对网络中业务数据的安全防护,着重保证数据的保密性、完整性与可用性。而在工控网络中,网络的可用性是需要优先保障的,生产业务要求不间断运行,运行过程中很难对安全设备进行更新换代,也不能像信息网络那样可以晚间中止服务数个小时来更新版本、补丁或安全控制措施。

二是安全弹性是工控网络的基本要求。与普通信息网络强调“共享性”不同,工控网络要求具有高弹性安全能力(Cyber Resilience),也叫高鲁棒性安全能力,其网络信息体系设计和安全防御架构,必须考虑从各类网络攻击事件中“迅速恢复”能力。如何确保生产活动在遭受网络攻击时,工控网络系统能够抵挡攻击入侵并快速从攻击损坏中恢复,自动适应生产环境并保持其业务正常运转能力,是非常重要的。

三是安全措施不能影响工控网络的“四高”属性。工控网络的四高属性:高可用性,与普通信息网络强调保密性不同,工控网络强调可用性;高确定性,工控网络对通信时延、抖动要求远高于普通信息网络;高可靠性,工控网络要求尽可能短的通信中断、尽可能低的丢包率、对报文时序错乱天生比较敏感;高融合性,这是当代工控网络出现的新趋势,工控网络不再是单纯的OT网络,而是OT、IT、IoT高度混杂融合的网络。

基于工控网络特殊安全属性,其安全防御需求至少包括以下3个方面:​

一是网络环境的可信性,主要是指整个网络环境必须是确定清晰且可信任的,至少涵盖网络边界、网络设备和网络交互的可信性等三个方面。网络边界可信是指所有网络边界都是清晰可描述的,包括终端设备的接入、终端设备上的外设接口、边界隔离交换设备配置策略等;设备可信是指所有接入网络的设备都是明确无遗漏的,所有终端设备的使用与变更要做到实时监控;网络交互可信是指网络中各个终端设备之间的交互行为是清晰可信的,包括网络交互的参与方、采用的通信协议、执行的操作行为等。

二是网络状态的可知性,主要是指对于网络当前运行的总体状态明确可知,能够及时感知其中正在发生或可能发生的安全事件,提前发现网络异常情况或正在发生的攻击活动,提升网络异常行为发现感知能力,至少涵盖设备接入、网络交互和安全事件的可知性等三个方面。

设备接入可知是指各类终端设备接入网络的情况是实时可知的,包括设备数量、类型、终端属性信息等;交互活动可知是指网络内各个终端设备之间的交互情况是实时可知的,包括当前活动连接分布情况、网络流量内容情况等;网络行为事件可知是指网络中出现的异常流量现象或异常网络行为是实时可知的,包括可疑终端设备接入、违规外联、恶意提权操作等。

一种符合工控系统

三是网络运行的可控性,主要是指网络能够在运行过程中随着网络环境的变化及时调整威胁检测规则,在网络内发现异常活动或攻击行为时能够随即采取措施,阻断其攻击活动,控制其危害范围,保证相关生产业务系统的安全平稳运行,至少需要涵盖分布性、适应性和可恢复性等三个方面内容。

控制的分布性是指网络中的安全控制点或监测设备分散在网络各个角落;控制的适应性是指能够随着网络环境的变化动态调整其威胁检测能力,确保对外部安全威胁和内部异常行为的检测效率与准确性;控制的自恢复性是指网络在发现内部异常活动或外部攻击行为后,能够及时采取反制措施,自行恢复网络运转。

2.​高安全工控网络防御体系设计思路

高安全性工控网络,绝对不是简单地将普通信息网络安全保护技术迁移到工控网络,也不是将普通信息网络安全保护的“三大件”部署在工控网络,形成“安全孤岛”或“数字堡垒”。高安全性工控网络构建思路分为全新重构高安全性工控网络和持续加固现有工控网络。

全新重构高安全性工控网络,主要有以下2个设计思路:

一是创新网络体系结构,基于下一代互联网技术建立具备自认证特征的基础安全网络,解决现有网络在互联互通与安全可控之间的对立矛盾,改变当前以行政管理手段解决基础架构安全问题的尴尬局面,为工控网络安全防御体系构造打下坚实技术根基;

二是建立动态信任体系,将传统网络安全技术与”可信计算”技术结合起来,改变传统安全体系”防外重于防内”却”防不胜防”的不利现状,根据不同任务场景的不同安全需求,以终端的安全可信为源头、作为信任根,从终端到网络、到应用、到服务、到数据,基于主体属性与客体保护等级之间的安全度量,建立动态信任信任链,最终建立起覆盖整个工控网络的可信网络连接,从而提供对工控网络环境更加完善的安全控制与安全保障。

持续加固现有工控网络,主要有以下2个设计思路:

一是建立和持续优化纵深防御机制,将网络安全能力部署到工控基础设施与信息系统的“每一个角落”,力求最大化覆盖构成工控网络的各个组成实体,实现工控网络与安全防护措施“深度融合、纵深覆盖”的纵深防御能力;

二是部署网络主动防御能力,建立威胁情报和人工智能引导的网络安全态势感知与安全控制体系,持续检测网络安全风险,准确感知网络攻击特征,及时阻断网络攻击活动,完善改进网络防护措施。哪怕是遭受物理攻击,也能确保核心业务数据不被窃取,重要生产活动不被干扰,并能表现出充分的业务安全弹性与自主恢复能力。

3.​全新重构高安全性工控网络关键路径

高安全性工控网络以统一安全基底为基础、以安全因需赋能为核心、以智能安全管理为保障,在安全态势感知、威胁检测预警、防御能力部署机制的支撑下,形成“监测-决策-响应-防御”的动态防御体系,实现基于态势变化和安全需求的网络信息系统安全防御。

其关键技术途径主要包括:内生安全的基础网络、安全可信终端、动态信任机制,其中:具备内生安全的基础网络是整个工控网络防御的基石;动态信任体制是工控网络防御的关口,既不能让“坏人”进来,又要把“好人”放进来,而且“好”与“坏”并非一成不变,而是要持续度量持续评估;安全可信终端是工控网络防御的支点,终端是所有安全策略与信任关系的执行点,是所有安全措施与访问控制的落脚点,是所有安全防御活动实际效果体现的环节。

内生安全基础网络:当前基础的工控网络,包括普通信息网络,都不具备地址真实性鉴别的内生机制。针对此问题,IETF提出的HIP协议思路,在网络层和传输层之间插入主机标识层,IP地址只作为网络层所使用的定位标识符,实现数据报的路由转发,主机标识符 HI(Host Identity)提供主机身份标识功能,由传输层使用。双方在通信时,IP地址的变化对传输层透明,从而保证在发生移动或地址变化时,通信不中断可以持续进行,并且通信对端可以根据主机标识 HI确定移动节点身份。

安全可信终端:目前工控网络中的各类终端设备,其软硬件体系结构大多是Wintel架构,其终端安全管控系统只能通过”打补丁、堵漏洞、建盾墙”等外挂方式,为终端系统运行提供安全防护能力,其防护效果往往是防不胜防。有人提出借助当前国产化替代的契机,采用虚拟化技术来实现可信终端。

动态信任机制:静态信任机制先构建基础的信任根,然后从信任根开始到硬件平台、操作系统、应用程序,一层认证一层,一层信任一层,把这种信任扩展到整个工控网络,从而确保整个工控网络的可信性。工业互联网将封闭的工控网络系统打开,更加强调大规模业务资源共享与广域业务流程协作,更加强调扁平化控制与分步式协同联动,静态信任机制已经不适用于当前及未来工控网络。

基于“零信任”理念的动态信任机制,是参考了人类社会中的信任关系而提出的用于解决分布式网络的信任管理模型。动态信任管理模型认为信任关系随时间变化而变化,需要实时在线对信任关系进行评估;认为不同任务场景下网络主体与客体之间的信任关系,需要根据主体身份属性与客体受保护等级的不同而精确度量分析,进行细粒度权限控制和特定时空范围的检测审计;认为信任关系可以传播,可以沿着业务网络中具备可信连接路径的关系路线进行传播,解决不同安全域之间身份标识按需安全互认问题;认为信任关系的构建主要依靠相当长有效时间的安全交互行为,真正管用好用的可信管理策略需要从海量通信实体交互日志中挖掘生成,人为行政管理手段只是辅助。

4.持续安全加固现有工控网络关键路径

在实现高安全工控网络的时候,我们不得不面对一个现实,那就是当前存在超大规模的正在服役的工控网络系统,如何确保它的网络信息安全?

一是建立和持续优化纵深防御机制。纵深防御是攻防对抗中消耗对方资源的最有效的方法。从网络空间安全的角度来看,可以从物理层、技术层和管理层分别建立纵深防御体系。如下图所示:

物理层纵深防御又可分为物理层、技术层和管理层。物理层有可视性、CPTED等安全考虑和措施指标;技术层措施包括电子门禁、物理入侵检测、CCTV、报警系统等指标;管理层面会有场地管理、人员管理、应急演练等指标。

技术层纵深防御至少包括网络、主机/设备、应用、数据等四层防线。如下图所示:

网络层按协议纵向层次防御,在OSI模型7个层次都可以采取相应的安全措施,比如物理层的防窃听、链路层的防ARP欺骗、网络层的IPsec、传输层的TLS等,应用层的识别控制等。网络层按照逻辑区域防御,从外至内看,DMZ区可以有防火墙、科学、WAF、IDS、APT防护、蜜罐等防控措施,在内网区域,有防火墙和网络分区,有VLAN隔离、网络准入、网络DLP、内网蜜罐、SIEM、虚拟桌面等等内容,在内网的核心区域,保存着重要业务的数据库。

应用层可从代码层、服务层和业务层来防御,代码层是最基础,对应的安全方法有安全编码规范、代码走查、代码扫描、代码审计等等;服务层,有认证、授权、日志、加密、哈希、签名等等技术措施;业务层,可以做更多的安全措施,会根据用户的行为和特征做相应的安全防范。

管理层纵深防御从组织保障、安全规划、管理制度到人的安全意识逐层递进。在组织保障层面,要建立起安全组织架构、人员配备、岗位职责、协调机制等;在安全规划层面,要制定安全方针、目标、愿景、策略并注重跟踪落实;在管理制度层面,要定义一系列工作的规章和流程,如安全需求管理、漏洞管理、应急管理、事件管理、变更管理、配置管理等规章制度。

最终在人的安全意识层面上,本质上是要防范和规避人性的缺陷。为防范因人的疏忽而导致的误操作,会采用变更管理、方案审核、双人复核等措施;为防范人的懒惰,会采用考勤、巡检、抽查、督办、审计等措施;为防范人的贪婪,会采用最小特权、职责分离、多人控制、知识分离、特权管理等手段;为防范或威慑可能的作案者,会采用岗位轮换、强制休假、离任审计等手段;为防范人的安全防范意识薄弱,需要对他们进行不断的培训、教育、宣传、警示。信息安全意识培训最重要的是提高警惕性,尤其是提高对社工类型攻击的识别和防范能力。最后,建立安全问责机制也很重要,要对所有因不履行流程、不尽职、甚至是故意违反制度,尤其是引起不良后果的人和事都要问责。

为正在运行服役的工控网络系统部署纵深防御能力,也可以考虑从物理层面、技术层面和管理层面来实施。这里仅描述技术层面的纵深防御体系。

为工控网络系统实施纵深防御的核心思想:垂直分层、水平分区;边界控制、内部监测;态势感知、集中管理。如下图所示,为工控系统和网络提供五道防线:

第1道防线:部署工业网闸或工业防火墙实现IT与OT网络隔离与访问控制;

第2道防线:部署工业防火墙实现操作层与监控层网络隔离与访问控制;

第3道防线:部署工业卫士实现上位机加固、恶意代码防护;

第4道防线:部署工业网络入侵防御系统或工业防火墙抵御上位机与控制器之间的双向入侵攻击;

第5道防线:部署现场总线防火墙抵御来自现场总线网络的入侵攻击。

如上图所示,有时候我们容易将工业网络入侵审计系统、工业安全管理平台、厂站工业态势感知平台三个系统在纵深防御体系中的价值定位混淆。

旁路部署在工业交换机的工业网络入侵审计系统,属于安全监测类系统,它的视野也仅仅是工业交换机所能够连接的网络区域,要想搞清楚工业网络入侵审计系统应该提供哪些安全功能,应该以什么样的交互方式提供这些安全功能,那么我们可以观察一下这个网络区域的OT工程师他们是如何监测生产业务的,具有如下特点:

因此工业网络入侵审计系统不需要太多的统计分析图表,而是重点提供经过去重、关联、排序后的安全事件实时监测画面即可,当然还需要提供安全事件留存证据查询与调取的操作界面。

工业安全管理平台针对整个工控网络或工控网络某区域从安全设备、网络结构、安全策略、安全事件四个方面进行统一管理。因此工业安全管理平台的管理视野可以小到一台工业交换机的网络范围,大到整个工厂的工控网络。

二是部署主动防御能力。工业网络入侵审计系统是针对安全事件的实时监测,但往往视野仅仅局限在某个工业交换机网络范围,如果希望了解整个工厂的工控网络,甚至是工厂IT网络的安全状况,则需要一个能够监测到更大范围的工具,这个工具就是上图中的厂站工业态势感知平台。

在工厂范围来说,更关心的是发生了什么,是否被网络入侵、感染病毒了,因此厂站工业态势感知平台侧重于基于XDR思想,借助人工智能、大数据分析等技术,实现整个工厂的工控网络和信息网络的关联威胁检测和威胁处置,从而具备主动防御能力:持续检测网络安全威胁、准确感知网络安全风险、及时阻断网络攻击活动、完善改进网络防护措施。​


win10系统死机是什么原因吗

根据电脑死机发生时的情况可将其分为四大类:①开机过程中出现死机:在启动计算机时,只听到硬盘自检声而看不到屏幕显示,或干脆在开机自检时发出鸣叫声但计算机不工作、或在开机自检时出现错误提示等;②在启动计算机操作系统时发生死机:屏幕显示计算机自检通过,但在装入操作系统时,计算机出现死机的情况;③在使用一些应用程序过程中出现死机:计算机一直都运行良好,只在执行某些应用程序时出现死机的情况;④退出操作系统时出现死机:就是在退出Win98等系统或返回DOS状态时出现死机。 由干在“死机”状态下无法用软件或工具对系统进行诊断,因而增加了故障排除的难度。 死机的一般表现有:系统不能启动、显示黑屏、显示“凝固”、键盘不能输入、软件运行非正常中断等。 死机的原因大概有千千万万种,但只有两个方面:一是由电脑硬件引起的,一是软件设计不完善或与系统和系统其它正在运行的程序发生冲突。 在硬件方面,祸首就是近来在电脑DIY界流行的“超频’一—让CPU工作在额定运行频率以外的时钟频率上,CPU处于超额工作状态,出现死机就不奇怪了;其次一个原因是某个硬件过热,或者硬件资源冲突。 当然还有其他一些硬件方面的原因。 在软件方面,因为软件原因而造成的死机在电脑中几乎占了大多数(超频了的电脑除外)。 在Windows9x系列中使用了16位和32位混合的内核模式,因此安全性很低,因程序内存冲突而死机是经常会发生的事情。 下面就来介绍一下遇到死机故障后一般的检查处理方法。 一、排除系统“假”死机现象1.首先排除因电源问题带来的“假”死机现象。 应检查电脑电源是否插好,电源插座是否接触良好,主机、显示器以及打印机、扫描仪、外置式MODEM,音箱等主要外接电源的设备电源插头是否可靠地插入了电源插座、上述各部件的电源开关是否都处于开(ON)的状态。 2.检查电脑各部件间数据,控制连线是否连接正确和可靠,插头间是否有松动现象。 尤其是主机与显示器的数据线连接不良常常造成“黑屏”的假死机现象。 二、排除病毒感染引起的死机现象用无毒干净的系统盘引导系统,然后运行KILL,AV95、SCAN等防病毒软件的最新版本对硬盘进行检查,确保电脑安全,排除因病毒引起的死机现象。 另外,如果在杀毒后引起了死机现象,这多半是因为病毒破坏了系统文件、应用程序及关键的数据文件,或是杀毒软件在消除病毒的同时对正常的文件进行了误操作,破坏了正常文件的结构。 碰到这类问题,只能将被损坏(即运行时引起死机)的系统或软件重装。 三、排除软件安装、配置问题引起的死机现象1.如果是在软件安装过程中死机,则可能是系统某些配置与安装的软件冲突。 这些配置包括系统BIOS设置、和的设置、、的设置以及一些硬件驱动程序和内存驻留程序的设置。 可以试着修改上述设置项。 对BIOS可以取其默认设置,如“LOADSETUPDEFAULT”和“LOADBIOSDEFAULT”;对和则可以在启动时按F5跳过系统配置文件或按F8逐步选择执行以及逐项修改和中的配置(尤其是EMM386中关于EMS、XMS的配置情况)来判断硬件与安装程序什么地方发生了冲突,一些硬件驱动程序和内存驻留程序则可以通过不装载它们的方法来避免冲突。 2.如果是在软件安装后发生了死机,则是安装好的程序与系统发生冲突。 一般的做法是恢复系统在安装前的各项配置,然后分析安装程序新装入部分使用的资源和可能发生的冲突,逐步排除故障原因。 删除新安装程序也是解决冲突的方法之一。 四、根据系统启动过程中的死机现象来分析系统启动过程中的死机现象包括两种情况:1.致命性死机,即系统自检过程未完成就死机,一般系统不给出提示。 对此可以根据开机自检时致命性错误列表的情况,再结合其它方法对故障原因作进一步的分析。 2.非致命性死机,在自检过程中或自检完成后死机,但系统给出声音、文字等提示信息。 可以根据开机自检时非致命性错误代码表和开机自检时鸣笛音响对应的错误代码表来检查;开机自检时鸣笛音响对应的错误代码表中所列的情况是对可能出现故障的部件作重点检查,但也不能忽略相关部件的检查,因为相当多的故障并不是由提示信息指出的部件直接引起,而常常由相关部件故障引发。 五、排除因使用、维护不当引起的死机现象电脑在使用一段时间后也可能因为使用、维护不当而引起死机,尤其是长时间不使用电脑后常会出现此类故障。 引起的原因有以下几种:1.积尘导致系统死机:灰尘是电脑的大敌。 过多的灰尘附着在CPU、芯片、风扇的表面会导致这些元件散热不良,电路印刷板上的灰尘在潮湿的环境中常常导致短路。 上述两种情况均会导致死机。 具体处理方法可以用毛刷将灰尘扫去,或用棉签沾无水酒精清洗积尘元件。 注意不要将毛刷和棉签的毛、棉留在电路板和元件上而成为新的死机故障源。 2.部件受潮:长时间不使用电脑,会导致部分元件受潮而不能正常使用。 可用电吹风的低热挡均匀对受潮元件“烘干”。 注意不可对元件一部分加热太久或温度太高,避免烤坏元件。 3.板卡、芯片引脚氧化导致接触不良:将板卡、芯片拔出,用橡皮擦轻轻擦拭引脚表面去除氧化物,重新插入插座。 4.板卡、外设接口松动导致死机:仔细检查各I/O插槽插接是否正确,各外设接口接触是否良好,线缆连接是否正常。 六、排除因系统配置不当引起的死机现象系统配置与电脑硬件设备和系统BIOS、主板上跳线开关设置密切相关,常见的死机故障原因有:1.主频设置不当:此类故障主要有CPU主频跳线开关设置错误、Remark的CPU引起的BIOS设置与实际情况不符、超频使用CPU,或CPU性能不良死机。 2.内存条参数设置不当:此类故障主要有内存条设置错误和Remark内存条引起的BIOS设置与实际情况不符。 3.CACHE参数设置不当:此类故障主要有CHCHE设置错误、RemarkCACHE引起的BIOS设置与实际情况不符。 4.CMOS参数被破坏:频繁修改CMOS参数,或病毒对CMOS参数的破坏,常常会导致CMOS参数混乱而很难恢复。 可以采用对CMOS放电的方法并采用系统BIOS默认设置值重新设定CMOS参数。 CMOS的放电方法可参照主板说明书进行。 如果是病毒感染引起的,在重设CMOS参数后,还必须对硬盘杀毒。 七、排除因硬件安装不当引起的死机现象硬件外设安装过程中的疏忽常常导致莫名其妙的死机,而且这一现象往往在电脑使用一段时间后才逐步显露出来,因而具有一定的迷惑性。 1.部件安装不到位、插接松动、连线不正确引起的死机,显示卡与I/0插槽接触不良常常引起显示方面的死机故障,如“黑屏”,内存条、CACHE与插槽插接松动则常常引起程序运行中死机、甚至系统不能启动,其它板卡与插槽(插座)的接触问题也常常引起各种死机现象。 要排除这些故障,只须将相应板卡、芯片用手摁紧、或从插槽(插座)上拔下重新安装。 如果有空闲插槽(插座),也可将该部件换一个插槽(插座)安装以解决接触问题。 线缆连接不正确有时也会引发死机故障。 2.安装不当导致部件变形、损坏引起的死机口径不正确、长度不恰当的螺钉常常导致部件安装孔损坏,螺钉接触到部件内部电路引起短路导致死机,不规格的主板、零部件或不规范的安装步骤常常引起机箱、主板、板卡外形上的变异因而挤压该部件内部元件导致局部短路、内部元件损坏从而发生莫名其妙的死机。 如果只是电脑部件外观变形,可以通过正确的安装方法和更换符合规格的零部件来解决;如果已经导致内部元件损坏,则只能更换新的零部件了。 八、排除因硬件品质不良引起的死机现象一般说来,电脑产品都是国际大厂商按照国际标准流水线生产出来的,部件不良率是很低的。 但是高利润的诱惑使许多非法厂商对电脑标准零部件改头换面、进行改频、重新标记(Remark)、以次充好甚至将废品、次品当作正品出售,导致这些“超水平”发挥的产品性能不稳定,环境略有不适或使用时间稍长就会频繁发生故障。 尤其是CPU、内存条、主板等核心部件及其相关产品的品质不良,是导致无原因死机的主要故障源。 应着重检查以下部件:1.CPUCPU是被假冒得最多也是极容易导致死机的部件。 被Remark的CPU在低温、短时间使用时一切正常,但只要在连续高温的环境中长时间使用,其死机弊端就很容易暴露。 使用Windows、3DS等对CPU特性要求较高的软件比DOS等简单软件更能发现CPU的问题。 如需确认是否为此故确认是否为此故障可参照说明书将CPU主频跳低1到2个档次使用,比如将166降为150、133或120使用。 如果死机现象大幅度减少或消失,就可以判断是CPU有问题。 也可以用交换法,更换同型号的正常CPU,如果不再死机一般可以断定是CPU的问题。 有些用户喜欢把CPU超频使用以获得高速的性能,这也是常导致计算机死机的原因。 一般将CPU跳回原频率就能解决死机问题。 2.内存条内存条常常被做的手脚有:速度标记被更改,如:70ns被Remark为60ns,非奇偶校验冒充奇偶校验内存,非EDO内存冒充EDO内存,劣质内存条冒充好内存条。 在BIOS中将内存条读写时间适当增加(如:从60ns升为70ns),如果死机消失可以断定是内存条速度问题。 如果是内存本身的质量问题,只有更换新的内存条才能解决。 3.主板一般主板的故障常常是最先考虑然而却是要到最后才能确定的。 除了印刷板上的飞线、断线和主板上元件被烧焦、主板受挤压变形、主板与机箱短路等明显的现象外,主板本身的故障只有在确认了主板上所有零部件正常(将你的板卡、CPU、内存条等配件拿到好的主板上使用正常,而别人使用正常的板卡、器件插到你的主板上就不能正常运行)时才能判断是否是主板故障,如果更换了好的同型号主板死机依然存在、则可能是该主板与某个零部件不兼容。 要么更换兼容的其它型号的主板、要么只能用拔插法依次测试各板卡、芯片,找出不兼容的零部件更换之。 4.电源、风扇、机箱等劣质电源、电源线缆故障、电源插接松动、电源电压不稳都是引起不明原因死机的罪魁祸首。 CPU风扇、电源风扇转动不正常、风扇功率不足则会引起CPU和机箱内“产热大户”元件散热不良因而引起死机。 九、系统黑屏故障的排除系统死机故障多半表现为黑屏(即显示器屏幕上无任何显示)、这类故障与显示器、显示卡关系很密切,同时系统主板、CPU、CACHE、内存条,电源等部件的故障也能导致黑屏。 系统黑屏死机故障的一般检查方法如下:1.排除“假”黑屏:检查显示器电源插头是否插好,电源开关是否已打开,显示器与主机上显示卡的数据连线是否连接好、连接摇头是否松动,看是否是因为这些因素而引起的黑屏。 另外,应该动一下鼠标或按一下键盘看屏幕是否恢复正常。 因为黑屏也可能是因为设置了节能模式(可在BIOS设置中查看和修改)而出现的假死机。 2.在黑屏的同时系统其它部分是否工作正常,如:启动时软/硬盘驱动器自检是否通过、键盘按键是否有反应等。 可以通过交换法用一台好的显示器接在主机上测试、如果只是显示器黑屏而其它部分正常,则只是显示器出了问题,这仍是一种假死机现象。 3.黑屏发生在系统开机自检期间,请参见第四步。 4.黑屏发生在显示驱动程序安装或显示模式设置期间,显然是选择了显示系统不能支持的模式,应选择一种较基本的显示方式。 如:Windows下设置显示模式后黑屏或花屏,则应在DOS下运行Windows目录下的程序选择标准VGA显示方式。 5.检查显示卡与主板I/O插槽接触是否正常、可靠,必要时可以换一个I/O槽插入显示卡试试。 6.换一块已确认性能良好的同型号显示卡插入主机重新启动,若黑屏死机现象消除则是显示卡的问题。 7.换一块已确认性能良好的其它型号显示卡插入主机重新启动,若黑屏死机现象消除则是显示卡与主机不兼容,可以考虑更换显示卡或主板。 8.检查是否错误设置了系统的核心部件,如CPU的频率、内存条的读写时间、CACHE的刷新方式、主板的总线速率等,这些都可能导致黑屏死机。 9.检查主机内部各部件连线是否正确,有一些特殊的连线错误会导致黑屏死机。 10.请参见本文的其它步骡所列的死机故障诊断方法,这些故障导致的死机常常也伴随着黑屏。

轻质墙的标准是什么?

建筑轻质墙的标准是指墙体的容重每立方米小于超过600KG,砼空心砌块算是轻质墙体

电梯的使用寿命是多长

一般15年就应该报废。 一、符合下列条件之一的电梯应报废: (一)建筑物仅设计一部电梯(无备用梯)的,使用时间达到15年;有备用梯达到18年; (二)属于国家行业主管部门已明令停止生产,而运行时间已超过15年的; (三)主机和其它主要配套件磨损严重,设备已经过三次以上大修,再次维修工程的投资费用超过设备折旧残值的;二、符合下列条件之一的住宅电梯,电梯产权人应向当地有特种设备检测中心或当地房屋设备检验检测所及国家电梯质量监督检验中心申请鉴定,予以确定是否需要报废。 (一)产品质量或安装质量存在严重缺陷。 (二)由于建筑物结构损坏或电梯发生过严重事故,导致中梯设备严重损坏的。 (三)建筑物已严重倾斜或沉降,造成电梯运行方向与垂直方向倾斜度大于15的。 (四)主要机械部件严重锈蚀、变形或电气设备严重老化、损坏的。 (五)其它无法保证安全运行基本条件的。

本文版权声明本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请联系本站客服,一经查实,本站将立刻删除。

发表评论

热门推荐