平流式沉砂池是一种常见的预处理设施,用于去除污水中的大块砂粒、砾石等悬浮固体,其工作原理是利用水流在池内的平流运动,使悬浮物在池底沉积,从而实现固液分离,本文将详细介绍平流式沉砂池的计算草图,包括设计参数、计算步骤和注意事项。
photoshop CS中的图层蒙版主要作用是什么?
Photoshop蒙版的主要作用:1. 抠图;2. 做图的边缘淡化效果;3. 图层间的溶合。 在使用photoshop等软件进行图形处理时,我们常常需要保护一部分图像,以使它们不受各种处理操作的影响,蒙版就是这样的一种工具,它是一种灰度图像,其作用就像一张布,可以遮盖住处理区域中的一部分,当我们对处理区域内的整个图像进行模糊,上色等操作时,被蒙版遮盖起来的部分就不会受到改变。 蒙版还可以达到这样的效果,当蒙版的灰度色深增加时,被覆盖的区域会变得愈加透明,利用这一特性,我们可以用蒙版改变图片中不同位置的透明度,甚至可以代替“橡皮”工具在蒙版上擦除图像,而不影响到图像本身。
UG软件是什么意思
UGEDS公司的Unigraphics NX是一个产品工程解决方案,它为用户的产品设计及加工过程提供了数字化造型和验证手段。 Unigraphics NX针对用户的虚拟产品设计和工艺设计的需求,提供了经过实践验证的解决方案。 Unigraphics NX为设计师和工程师提供了一个产品开发的崭新模式,它不仅对几何的操纵,更重要的是团队将能够根据工程需求进行产品开发。 Unigraphics NX能够有效地捕捉、利用和共享数字化工程完整过程中的知识,事实证明为企业带来了战略性的收益。 来自 UGS PLM 的 NX 使企业能够通过新一代数字化产品开发系统实现向产品全生命周期管理转型的目标。 NX 包含了企业中应用最广泛的集成应用套件,用于产品设计、工程和制造全范围的开发过程。 如今制造业所面临的挑战是,通过产品开发的技术创新,在持续的成本缩减以及收入和利润的逐渐增加的要求之间取得平衡。 为了真正地支持革新,必须评审更多的可选设计方案,而且在开发过程中必须根据以往经验中所获得的知识更早地做出关键性的决策。 NX 是 UGS PLM 新一代数字化产品开发系统,它可以通过过程变更来驱动产品革新。 NX 独特之处是其知识管理基础,它使得工程专业人员能够推动革新以创造出更大的利润。 NX 可以管理生产和系统性能知识,根据已知准则来确认每一设计决策。 NX 建立在为客户提供无与伦比的解决方案的成功经验基础之上,这些解决方案可以全面地改善设计过程的效率,削减成本,并缩短进入市场的时间。 通过再一次将注意力集中于跨越整个产品生命周期的技术创新, NX 的成功已经得到了充分的证实。 这些目标使得 NX 通过无可匹敌的全范围产品检验应用和过程自动化工具,把产品制造早期的从概念到生产的过程都集成到一个实现数字化管理和协同的框架中。 工业设计和风格造型:NX 为那些培养创造性和产品技术革新的工业设计和风格提供了强有力的解决方案。 利用 NX 建模,工业设计师能够迅速地建立和改进复杂的产品形状, 并且使用先进的渲染和可视化工具来最大限度地满足设计概念的审美要求。 产品设计:NX 包括了世界上最强大、最广泛的产品设计应用模块。 NX 具有高性能的机械设计和制图功能,为制造设计提供了高性能和灵活性,以满足客户设计任何复杂产品的需要。 NX 优于通用的设计工具,具有专业的管路和线路设计系统、钣金模块、专用塑料件设计模块和其他行业设计所需的专业应用程序。 仿真、确认和优化:NX 允许制造商以数字化的方式仿真、确认和优化产品及其开发过程。 通过在开发周期中较早地运用数字化仿真性能,制造商可以改善产品质量,同时减少或消除对于物理样机的昂贵耗时的设计、构建,以及对变更周期的依赖。 Tooling:NX tooling applications extend design productivity and efficiency into manufacturing, with solutions that are dynamically linked with product models to ensure accuracy and timely development of production tooling, workholding jigs and fixtures, and complex molds and :NX provides process-oriented machining solutions that streamline machining while optimizing speed and efficiency. With a do anything range of capabilities, NX machining solutions include advanced numerical control programming, toolpath and machine simulation, postporcessing, shop documentation, and process planning.有序的开发环境:NX 产品开发解决方案完全支持制造商所需的各种工具,可用于管理过程并与扩展的企业共享产品信息。 NX 与 UGS PLM 的其他解决方案的完整套件无缝结合。 这些对于 CAD 、 CAM 和 CAE 在可控环境下的协同、产品数据管理、数据转换、数字化实体模型和可视化都是一个补充。 UG主要客户包括,通用汽车,通用电气,福特,波音麦道,洛克希德,劳斯莱斯,普惠发动机,日产,克莱斯勒,以及美国军方。 几乎所有飞机发动机和大部分汽车发动机都采用UG进行设计,充分体现UG在高端工程领域,特别是军工领域的强大实力。 在高端领域与CATIA并驾齐驱。 UG的兄弟软件:1. Team Center,与达索的Smarteam并称为最强大的PLM软件2. Postbuilder, 准确的说是UG软件的一部分,强大的CAM/CNC后置处理器。 3. Nestran,与NASA的Nestran同根同组,是军工及航空航天业强大的CAE软件,主要应用于线性问题求解。 4. I-DEAS,军方用高端软件,福特和日产使用,常用在CAE领域5. SolidEdge,中端设计软件,除了Solidworks之外很常用的软件,强项是钣金6. Imagewre,逆向造型与汽车A面造型软件,在此领域市场领导者。 UG的二次开发工具非常强大,所以有必要做一下介绍:1. Open Grip,提供了最简单的解释性语言,类似于AutoCAD的Lisp,可以完成绝大多数曲线,实体CAD操作功能,生成的文件可以被UI Styler二次开发的菜单文件调用,也可被Open API(C语言)或者Open C++调用。 2. Open API,也叫Open C,UG的一个C语言函数库,将相似功能的函数放在同一个.h头文件中,只要被.c文件#include一下就能使用,编译后生成dll,这种dll文件可以直接由3种方式调用:1)通过调用,需要写在文件中2)通过UI Styler二次开发的对话框中的按钮响应函数来调用3)通过Open Grip函数调用。 Open C,是最强大的二次开发工具,可以实现草图,三维实体曲面,产品装配,汽车模块,模具模块,知识工程(Knowledge fusion),CAM加工,有限元FEM,数据库操作等所有UG功能的二次开发。 3. Open C++,与Open C类似,只是函数库为C++类库的形式,可以用C面向过程或者C++面向对象的方法来编写和调用。 但是功能仅局限于CAD。 4. UI Styler,用于二次开发扩展的菜单命令和对话框,界面,生成的, 可以调用上述二次开发语言编写的可执行代码。 5. Tooling Language,UG自己提供的一套工具说明性语言,比较多的用在Genius设备刀具管理和PostbuilderCAM后置处理器上,一般情况下,不需要做任何修改,以Postbuilder为例,在这个用Java编写的跨平台工具中,机床类型、主轴、机床各轴,进给率,刀具描述等都已经由这种由Java生成的工具语言完成.在Postbuilder窗口中的任何可视化修改,都会自动修改这些工具语言。 有经验的用户或第三方也可以自己修改这些工具。 6.在此补充的是,可以使用VB,Java等语言,通过对UG安装目录下各个, , , , 文件和数据库进行操作来达到上述二次开发工具同样的效果。 这也是UG二次开发工具强大之处。 [编辑本段]UG手动分模精密注塑模具UG是当今较为流行的一种模具设计软件,主要是因为其功能强大。 模具设计的流程很多,其中分模就是其中关建的一步。 分模有两种:一种是自动的,另一种是手动的,当能也不是纯粹的手动,也要用到自动分模工具条的命令,即模具导向。 UG自动分模的过程:1.分析产品,定位坐标,使Z轴方向和脱模方向一致。 2.塑模部件验证,设置颜色面。 3.补靠破孔4.拉出分型面5.抽取颜色面,将其与分型面和补孔的片体缝合,使之成为一个片体。 6.做箱体包裹整个产品,用5缝好的片体分割。 7.分出上下模具后,看是那个与产品重合,重合的那边用产品求差就可以了。 手动分模的步骤就大概就这样,手动分模具有很大的优势,是利用MOLDWIZARD分模所达不到的,在现场自动分模基本上是行不通。 但是里面的命令是比较的好用的,我们可以用的有关命令来提高我们的工作效率。
船舶制造的分类
车间的划分常根据船厂的生产规模、性质、习惯而有所不同。 过去很多造船厂除进行钢材加工、船体装配、焊接和设备系统安装外,还具有一定的铸、锻和机械加工能力,在制造船体的同时还制造主机、辅机、锅炉等设备。 20世纪50年代以来,随着造船及其配套工业的发展,造船厂已向总装方向发展,即以建造船体为主,大量的机电设备和舾装件则由专业或非专业的协作厂配套提供,船厂只进行安装,以提高造船质量和效率。 造船工序造船的主要工艺流程可用下面的框图表示。 钢材预处理在号料前对钢材进行的矫正、除锈和涂底漆工作。 船用钢材常因轧制时压延不均,轧制后冷却收缩不匀或运输、储存过程中其他因素的影响而存在各种变形。 为此,板材和型材从钢料堆场取出后,先分别用多辊钢板矫平机和型钢矫直机矫正,以保证号料、边缘和成型加工的正常进行。 矫正后的钢材一般先经抛光除锈,最后喷涂底漆和烘干。 这样处理完毕后的钢材即可送去号料。 这些工序常组成预处理自动流水线,利用传送滚道与钢料堆场的钢料吊运、号料、边缘加工等后续工序的运输线相衔接,以实现船体零件备料和加工的综合机械化和自动化。 放样和号料船体外形通常是光顺的空间曲面。 由设计部门提供的用三向投影线表示的船体外形图,称为型线图,一般按1:50或1:100的比例绘制。 由于缩尺比大,型线的三向光顺性存在一定的误差,故不能按型线图直接进行船体施工,而需要在造船厂的放样台进行1:1的实尺放样或者是1:5、1:10的比例放样,以光顺型线,取得正确的型值和施工中所需的每个零件的实际形状尺寸与位置,为后续工序提供必要的施工信息。 船体放样是船体建造的基础性工序。 号料是将放样后所得的船体零件的实际形状和尺寸,利用样板、样料或草图划在板材或型材上,并注以加工和装配用标记。 最早的放样和号料方法是实尺放样、手工号料。 20世纪40年代初出现比例放样和投影号料,即按1:5或1:10的比例进行放样制成投影底图,用相应的低倍投影装置放大至实际尺寸;或将投影底图缩小到1/5~1/10摄制成投影底片,再用高倍投影装置放大50~100倍成零件实形,然后在钢材上划线。 比例放样还可提供仿形图,供光电跟踪切割机直接切割钢板用,从而省略号料工序。 投影号料虽在手工号料的基础上有了很大改进,但仍然未能摆脱手工操作。 60年代初开始应用电印号料,即利用静电照相原理,先在钢板表面喷涂光敏导电粉末,进行正片投影曝光,经显影和定影后在钢板上显出零件图形。 适用于大尺寸钢板的大型电印号料装置采用同步连续曝光投影方式,即底图和钢板同步移动,在运动过程中连续投影曝光。 适用于小尺寸钢板的小型电印号料装置,则在钢板上一次投影出全部图形。 这种号料方法已得到较广泛的应用。 随着电子计算机在造船中的应用,又出现数学放样方法。 即用数学方程式表示船体型线或船体表面,以设计型值表和必需的边界条件数值作为原始数据,利用计算机进行反复校验和计算,实现型线修改和光顺,以获得精确光顺和对应投影点完全一致的船体型线。 船体的每条型线都由一个特点的数学样条曲线方程表示,并可通过数控绘图机(见绘图用具)绘出图形。 数学放样可取消传统的实尺放样工作,还可为切割和成形加工等后续工序提供控制信息,对船体建造过程的自动化具有关键的作用,是造船工艺的一项重要发展。 船体零件加工包括边缘加工和成形加工。 边缘加工就是按照号料后在钢材上划出的船体零件实际形状,利用剪床或氧乙炔气割、等离子切割进行剪割。 部分零件的边缘还需要用气割机或刨边机进行焊缝坡口的加工。 气割设备中的光电跟踪气割机能自动跟踪比例图上的线条,通过同步伺服系统在钢板上进行切割,它可与手工号料、投影号料配合使用。 采用数控气割机不但切割精度高,而且根据数学放样资料直接进行切割,可省略号料工序,实现放样、切割过程自动化。 对于具有曲度、折角或折边等空间形状的船体板材,在钢板剪割后还需要成形加工,主要是应用辊式弯板机和滚压机进行冷弯;或采用水火成形的加工方法,即在板材上按预定的加热线用氧-乙炔烘炬进行局部加热,并用水跟踪冷却,使板材产生局部变形,弯成所要求的曲面形状。 对于用作肋骨等的型材,则多应用肋骨冷弯机弯制成形。 随着数字控制技术的发展,已使用数字控制肋骨冷弯机,并进而研制数字控制弯板机。 船体零件加工已从机械化向自动化进展。 船体装配和焊接将船体结构的零部件组装成整个船体的过程。 普遍采用分段建造方式,分为部件装配焊接、分段装配焊接和船台装配焊接3个阶段进行。 ①部件装配焊接:又称小合拢。 将加工后的钢板或型钢组合成板列、T 型材、肋骨框架或船首尾柱等部件的过程,均在车间内装焊平台上进行。 ②分(总)段装配焊接:又称中合拢。 将零部件组合成平面分段、曲面分段或立体分段,如舱壁、船底、舷侧和上层建筑等分段;或组合成在船长方向横截主船体而成的环形立体分段,称为总段,如船首总段、船尾总段等。 分段的装配和焊接均在装焊平台或胎架上进行。 分段的划分主要取决于船体结构的特点和船厂的起重运输条件。 随着船舶的大型化和起重机能力的增大,分段和总段也日益增大,其重量可达800吨以上。 ③船台(坞)装配焊接:即船体总装,又称大合拢。 将船体零部件、分段、总段在船台(或船坞)上最后装焊成船体。 排水量10万吨以上的大型船舶,为保证下水安全,多在造船坞内总装。 常用的总装方法有:以总段为总装单元,自船中向船首、船尾吊装的称总段建造法,一般适用于建造中小型船舶;先吊装船中偏尾处的一个底部分段,以此作为建造基准向船首、船尾和上层吊装相邻分段,其吊装范围呈宝塔状的称塔式建造法;设有2~3个建造基准,分别以塔式建造法建造,最后连接成船体的称岛式建造法;在船台(或船坞)的末端建造第一艘船舶时,在船台的前端同时建造第二艘船舶的尾部,待第一艘船下水后,将第二艘船的尾部移至船台末端,继续吊装其他分段,其至总装成整个船体,同时又在船台前端建造第三艘船舶的尾部,依此类推,这种方法称为串联建造法;将船体划分为首、尾两段,分别在船台上建成后下水,再在水上进行大合拢的称两段建造法。 各种总装方法的选择根据船体结构特点和船厂的具体条件而定。 船体装配和焊接的工作量,占船体建造总工作量的75%以上,其中焊接又占一半以上。 故焊接是造船的关键性工作,它不但直接关系船舶的建造质量,而且关系造船效率。 自20世纪50年代起,焊接方法从全手工焊接发展为埋弧自动焊(见埋弧焊)、半自动焊、电渣焊、气体保护电弧焊。 自60年代中期起,又有单面焊双面成形、重力焊、自动角焊以及垂直焊和横向自动焊等新技术。 焊接设备和焊接材料也有相应发展。 由于船体结构比较复杂,在难以施行自动焊和半自动焊的位置仍需要采用手工焊。 结合焊接技术的发展,自60年代起,在船体部件和分段装配中开始分别采用 T型材装焊流水线和平面分段装焊流水线。 T 型材是构成平面分段骨架的基本构件。 平面分段在船体结构中占有相当的比重,例如在大型散装货船和油船上,平面分段可占船体总重的50%以上。 平面分段装焊流水线包括各种专用装配焊接设备,它利用输送装置连续进行进料、拼板焊接以及装焊骨架等作业,能显著地提高分段装配的机械化程度,成为现代造船厂技术改造的主要内容之一。 世界上有些船厂对批量生产的大型油船的立体分段也采用流水线生产方式进行装焊和船坞总装。 船体总装完成后必须对船体进行密闭性试验,然后在尾部进行轴系和舵系对中,安装轴系、螺旋桨和舵等。 在完成各项水下工程后准备下水。 船舶下水将在船台(坞)总装完毕的船舶从陆地移入水域的过程。 船舶下水时的移行方向或与船长平行,或与船长垂直,分别称为纵向下水和横向下水。 下水滑道主要为木枋滑道和机械化滑道。 前者依靠船舶自重滑行下水,使用较普遍;后者利用小车承载船体在轨道上牵引下水,多用在内河中小型船厂。 纵向下水之前先将搁置在墩木上的船体转移到滑板和滑道上,滑道向船舶入水方向有一定倾斜。 当松开设置于滑板与滑道间的制动装置后,船舶由于自重连同滑板和支架一起滑入水中,然后靠自身的浮力飘浮于水面。 为减少下滑时的摩擦阻力,在滑板与滑道之间常涂上一定厚度的下水油脂;也可用钢珠代替下水油脂,将滑动摩擦改为滚动摩擦,进一步减少摩擦力。 在船坞内总装的船,只要灌水入坞即能浮起,其下水操作比在船台下利用滑道下水简单和安全得多。 下水意味着船舶建造已完成了关键性的、主要的工作。 按传统习惯,大型船舶下水常举行隆重的庆祝仪式。 码头安装(设备和系统的安装)船舶下水后常是靠于厂内舾装码头,以安装船体设备、机电设备、管道和电缆,并进行舱室的木作、绝缘和油漆等工作。 码头安装涉及的工种很多,相互影响也较大。 而随着船舶设备和系统的日趋复杂,安装质量的要求也不断提高,故安装工作直接关系下水后能否迅速试航和交船。 为了缩短下水后的安装周期,应尽可能将上述安装工作提前到分段装配和船体总装阶段进行,称为预舾装。 将传统的单件安装改为单元组装,也可大大缩短安装周期,即根据机舱和其他舱室设备的布置和组成特点确定安装单元的组成程度,如主机冷却单元可包括换热器、泵、温度调节器、带附件的有关管道和单元所必需的电气设备。 在车间内组成安装单元,然后吊至分段、总段或船上安装,这样可使18~25%的安装工作量由船上提前到内场进行,能使船上的安装周期缩短15~20%。 系泊试验和航行试验在船体建造和安装工作结束后,为保证建造的完善性和各种设备工作的可靠性,必须进行全面而严格的试验,通常分为两个阶段,即系泊试验和航行试验。 系泊试验俗称码头试车,是在系泊状态下对船舶的主机、辅机和其他机电设备进行的一系列实效试验,用以检验安装质量和运转情况。 系泊试验以主机试验为核心,检查发电机组和配电设备的工作情况,以便为主机和其他设备的试验创造条件。 对各有关系统的协调、应急、遥测遥控和自动控制等还需要进行可靠性和安全性试验。 系泊试验时船舶基本上处于静止状态,主机、轴系和有关设备系统不能显示全负荷运转的性能,所以还需要进行航行试验。 航行试验是全面地检查船舶在航行状态下主机、辅机以及各种机电设备和系统的使用性能。 通常有轻载试航和重载试航。 在航行试验中测定船舶的航速、主机功率以及操纵性、回转性、航向稳定性、惯性和指定航区的适航性等。 试验结果经验船机构和用户验收合格后,由船厂正式交付订货方使用。 发展近代造船技术的发展过程是由手工操作向机械化、自动化迈进的过程。 自50年代起,船体建造用焊接取代了铆接,使船体建造由过去长期使用的零星散装方式改进为分段装配方式,大大提高了造船效率。 由于船体结构和形状比较复杂,手工操作在船体建造中一直占较大比重。 电子计算机和数控技术的应用正进一步改变造船业的面貌。 电子计算机首先应用于数学放样,进而出现数字输入和图形输出的数控绘图机、数控切割机、数控肋骨冷弯机、数控螺旋桨加工机床和管子加工机床等。 同时电子计算技术还在造船厂的生产管理、计划编制、材料设备供应和成本核算等方面逐渐得到应用。 为减少信息准备工作,消除设计与生产之间的脱节现象,又研制成大型造船集成数控系统,它包括船舶设计、生产和管理等所有功能的通用信息,能协调地完成从设计到生产的整个工作过程。 因此,继续扩大计算机在造船中的应用,是现代发展造船技术、进一步提高造船自动化程度的主要方向。 参考书目王勇毅等著:《船体建造工艺学》,人民交通工业出版社,北京,1980。














发表评论