安全与效率的协同机制
在数字化时代,数据安全与传输效率是企业与个人用户共同关注的核心议题,服务器计算的散列值与客户端的协同工作,正是保障数据完整性、验证身份真实性以及优化系统性能的关键技术之一,散列函数作为一种单向数学算法,能将任意长度的输入数据转换为固定长度的输出值(即散列值或哈希值),其不可逆性和抗碰撞性为信息安全提供了坚实基础,本文将深入探讨服务器计算散列值与客户端的交互逻辑、应用场景及实践意义。
散列值的基本原理与服务器端的计算逻辑
散列值的核心特性在于其“唯一性”和“确定性”——相同输入数据始终生成相同的散列值,而任何微小的数据变动都会导致散列值发生显著变化,服务器端通常负责执行散列计算,并承担数据验证与存储的主导角色,在用户注册场景中,服务器会接收客户端提交的密码,通过散列算法(如SHA-256、bcrypt)处理后存储散列值而非明文密码,即使数据库泄露,攻击者也无法直接获取原始密码,从而保障用户隐私。
服务器端的散列计算还涉及“盐值(Salt)”的运用,盐值是随机生成的字符串,与用户密码组合后再进行散列运算,可有效防止彩虹表攻击,用户密码“123456”与盐值“aB3!x9”组合后,生成的散列值与单纯密码的散列值完全不同,大幅提升了安全性,服务器可根据需求选择不同的散列算法,如MD5(已不推荐)、SHA-1(逐渐淘汰)或更安全的SHA-3,平衡计算效率与安全性。
客户端在散列交互中的角色与协作方式
客户端作为用户与服务器交互的终端,在散列机制中承担数据预处理、传输加密及本地验证等功能,以登录流程为例,客户端首先将用户输入的密码与本地存储的盐值组合,通过JavaScript等前端脚本进行初步散列计算,再将结果发送至服务器,这种方式可减少明文密码在网络传输中的暴露风险,尽管最终验证仍需依赖服务器端的二次散列比对。
在文件传输场景中,客户端可计算文件的散列值(如MD5或SHA-1),并与服务器提供的预期散列值对比,验证文件完整性,下载系统镜像时,用户可通过客户端工具校验散列值,确保文件未被篡改或损坏,客户端还可参与“挑战-响应”认证机制:服务器发送随机挑战值,客户端结合用户密码生成散列响应,服务器再通过预共享密钥验证响应合法性,进一步提升身份认证的安全性。
典型应用场景:从密码存储到数据校验
安全挑战与优化实践
尽管散列机制安全性较高,但仍面临潜在风险,暴力破解可通过穷举常见密码组合匹配散列值;彩虹表攻击利用预计算散列值表逆向破解密码,对此,服务器需采用“慢速散列算法”(如PBKDF2、bcrypt),增加计算耗时以抵御暴力破解;同时定期更新盐值,并强制要求复杂密码策略。
客户端的优化同样重要:避免在前端使用不安全的散列算法(如MD5),优先采用HTTPS传输散列值,防止中间人攻击,对于移动端应用,可结合硬件安全模块(HSM)保护散列计算过程,防止本地数据泄露。
未来趋势:量子计算与散列算法的演进
随着量子计算的发展,传统散列算法可能面临被破解的风险,nisT已启动后量子密码标准制定,研发抗量子攻击的散列算法(如SPHINCS+),服务器与客户端需逐步迁移至新型算法,同时探索零知识证明等技术与散列值的结合,在保障安全性的前提下提升交互效率。
服务器计算的散列值与客户端的协同,构建了现代信息安全的基石,从密码保护到数据校验,从身份认证到系统优化,二者的高效协作不仅提升了安全性,还优化了用户体验,随着技术的演进,这一机制将继续在隐私计算、边缘计算等新场景中发挥关键作用,为数字化世界的可信交互提供坚实支撑。
将军令的工作原理?
是“随机函数”将军令的工作原理:猜想将军令以帐号+密码+动态密码的形式对游戏id进行保护众所周知,将军令每隔一分钟变化一次6位数密码,俗称动态密码。 由于用户端(将军令)在出厂之后,同服务器端就再没有物理上直接的联系,因而,如何与服务器端保持逻辑上的同步是最大的问题,即如何保证用户端产生的动态密码与服务器端验证的动态密码是一个密码?猜测:用户端产生的动态密码是一个与时间有关的动态密码,即密码M与时间T之间存在着关系:M=rand(TX),rand()为随机函数,TX为随机函数的种子,X为另一因素,比如将军令的序列号等。 (1)X是一个服务器端已知的变量,出厂时就已经设定了,最大的可能是将军令的序列号、服务号或者序列号服务号所对应的一个因子,在生产将军令写入初始数据的时候,同时植入用户端和服务器端,由于每个将军令的序列号和服务号唯一,因而,拿不到将军令就无法知道X,也就无法知道动态密码M。 显然,只有因子X是不够的,M=rand(X),是产生了一个密码M,但显然无法动态变化,失去了意义。 因而因子T不可缺少。 (2)分析下,植入T之后,服务器端的T1受服务器端时钟影响,用户端T2受用户端时钟影响,问题出现了,如何保证在运行一段时间以后,T1=T2?一个方法是采用高精密的材料,保证在3年的时间里T1=T2,明显成本巨大,以市场上30元左右的电子手表为例,要保证成千上万个电子手表3年内的误差不超过1分钟,可以说是天方夜谈。 (3)假设:服务器端固定T0,引入因子△t,服务器端植入△t,△t为用户端时钟同服务器端时钟之差,即△t=T2-T1。 这样,用户端(将军令)端的密码M=rand(T2X),服务器端密码M=rand[(T1+△t)X],这样,对于成千上万的用户端(将军令)在服务器端只要记录了△t,就可以了。 这个△t,可以在将军令生产的时候植入服务器端予以记录。 (4)同步的问题可以这样解决,服务器端动态的调整△t。 在开通将军令的时候,在提交序列号和动态密码的时候,服务器端计算M=rand[(T1+△t)X],并且在△t的基础上,计算出...,△t-5*60,△t-4*60,△t-3*60,△t-2*60,△t-1*60,△t,△t+1*60,△t+2*60,△t+3*60,△t+4*60,△t+5*60,...这个数列。 具体数列长度根据需要来定,由于是随机6位数的函数,在这个数列中是不会出现重复的M的。 这样,就可以计算出△t附近前后相差n分钟所产生的密码M,只需要比对提交的动态密码与数列中的哪个值对应,就可以动态的调整△t。 假设,动态密码与△t-2*60对应的密码相同,就可以调整△t=△t-2*60。 这样,解决了用户端(将军令)从出厂到开通使用所产生的时间误差。 这个n,根据实际需要制定,如果出厂1个月就差几个小时的话,那将军令的质量就忒差了。 (6)在确定了△t后,服务器端在每次验证的时候,只要算出M1=rand[(T1+△t-y)X],M=rand[(T1+△t)X],M2=rand[(T1+△t+y)X],就可以算出△t附近y秒的时间的密码M,就是允许将军令有y秒的时间误差。 在具体使用中,有人已经测试证明将军令是有时间误差的。 如果服务器端的M与将军令的M不一样,而是服务器端的M1与将军令的M一样,就可以实时的进行动态调整△t=△t-y了,实现将军令同服务器端时间上的同步。 (7)电子表的原理:在直流电(电池)的作用下,通过晶体管、音叉、石英晶体、大规模集成电路等等作为振荡器产生一定频率的震荡,通过固定频率的震荡来传动马达,或者驱动液晶屏等来计时。 整个系统关键部位是能源(电池),振荡器,表现部分。 以石英表为例,在石英晶体的表面施加一定的电压后,石英晶体会产生固定频率的震动,通过分频器后驱动马达,带动指针转动,由于频率固定,指针的转动是匀速的,只要分频调整到与时间一致,就可以计时。 所以,电子手表计时是否准确关键看电池、振荡器的质量,我小的时候带的电子手表没电或者换电池后,通常不准,就是受电池电压变化的影响。 。 。 我想:1、不可逆的算法,这个很容易实现,数学领域中可以找到很多,随机函数也太多太多。 2,种子与服务器同步,对应我公式中的TX,同时植入服务器和用户端即可。 3,每分钟动态刷新密码。 植入时间因子就ok了。 4,关键问题还是同步。 从网易前阶段退出的将军令修复的措施来看,应该就是“提醒玩家主动协助对时”,跟新启用将军令几乎是同以道理。 而调整频繁问题,也可以采用算法改变调整频率,减轻服务器的负担。 5,同步的方法还有一些,如果想用的话,可以用“无线控制计时钟表”,原理是标准时间授时中心将标准时间信号进行编码,利用无线电长波发送出去,表端接收时间信号解码,调整时间,保证表端与授时中心时间高度一致。 谢谢!
169.254.136.228是什么类型的IP地址
IP地址有5类,A类到E类,各用在不同类型的网络中。 地址分类反映了网络的大小以及数据包是单播还是组播的。 A类到C类地址用于单点编址方法,但每一类代表着不同的网络大小。 A类地址(1.0.0.0-126.255.255.255)用于最大型的网络,该网络的节点数可达16,777,216个。 B类地址(128.0.0.0-191.255.255.255)用于中型网络,节点数可达65,536个。 C类地址(192.0.0.0-223.255.255.255)用于256个节点以下的小型网络的单点网络通信。 D类地址并不反映网络的大小,只是用于组播,用来指定所分配的接收组播的节点组,这个节点组由组播订阅成员组成。 D类地址的范围为224.0.0.0-239.255.255.255。 E类(240.0.0.0-255.255.255.254)地址用于试验。 169.254.136.228属于B类按照目前使用的IPv4的规定,对IP地址强行定义了一些保留地址,即:“网络地址”和“广播地址”。 所谓“网络地址”就是指“主机号”全为“0”的IP地址,如:125.0.0.0(A类地址);而“广播地址”就是指“主机号”全为“255”时的IP地址,如:125.255.255.255(A类地址)。 而子网掩码,则是用来标识两个IP地址是否同属于一个子网。 它也是一组32位长的二进制数值,其每一位上的数值代表不同含义:为“1”则代表该位是网络位;若为“0”则代表该位是主机位。 和IP地址一样,人们同样使用“点式十进制”来表示子网掩码,如:255.255.0.0。 如果两个IP地址分别与同一个子网掩码进行按位“与”计算后得到相同的结果,即表明这两个IP地址处于同一个子网中。 也就是说,使用这两个IP地址的两台计算机就像同一单位中的不同部门,虽然它们的作用、功能、乃至地理位置都可能不尽相同,但是它们都处于同一个网络中。 子网掩码计算方法自从各种类型的网络投入各种应用以来,网络就以不可思议的速度进行大规模的扩张,目前正在使用的IPv4也逐渐暴露出了它的弊端,即:网络号占位太多,而主机号位太少。 目前最常用的一种解决办法是对一个较高类别的IP地址进行细划,划分成多个子网,然后再将不同的子网提供给不同规模大小的用户群使用。 使用这种方法时,为了能有效地提高IP地址的利用率,主要是通过对IP地址中的“主机号”的高位部分取出作为子网号,从通常的“网络号”界限中扩展或压缩子网掩码,用来创建一定数目的某类IP地址的子网。 当然,创建的子网数越多,在每个子网上的可用主机地址的数目也就会相应减少。 要计算某一个IP地址的子网掩码,可以分以下两种情况来分别考虑。 第一种情况:无须划分成子网的IP地址。 一般来说,此时计算该IP地址的子网掩码非常地简单,可按照其定义就可写出。 例如:某个IP地址为12.26.43.0,无须再分割子网,按照定义我们可以知道它是一个A类地址,其子网掩码应该是255.0.0.0;若此IP地址是一个B类地址,则其子网掩码应该为255.255.0.0;如果它是C类地址,则其子网掩码为255.255.255.0。 其它类推。 第二种情况:要划分成子网的IP地址。 在这种情况下,如何方便快捷地对于一个IP地址进行划分,准确地计算每个子网的掩码,方法的选择很重要。 下面我介绍两种比较便捷的方法:当然,在求子网掩码之前必须先清楚要划分的子网数目,以及每个子网内的所需主机数目。 方法一:利用子网数来计算。 1.首先,将子网数目从十进制数转化为二进制数;2.接着,统计由“1”得到的二进制数的位数,设为N;3.最后,先求出此IP地址对应的地址类别的子网掩码。 再将求出的子网掩码的主机地址部分(也就是“主机号”)的前N位全部置1,这样即可得出该IP地址划分子网的子网掩码。 例如:需将B类IP地址167.194.0.0划分成28个子网:1)(28)10=()2;2)此二进制的位数是5,则N=5;3)此IP地址为B类地址,而B类地址的子网掩码是255.255.0.0,且B类地址的主机地址是后2位(即0-255.1-254)。 于是将子网掩码255.255.0.0中的主机地址前5位全部置1,就可得到255.255.248.0,而这组数值就是划分成 28个子网的B类IP地址 167.194.0.0的子网掩码。 方法二:利用主机数来计算。 1.首先,将主机数目从十进制数转化为二进制数;2.接着,如果主机数小于或等于254(注意:应去掉保留的两个IP地址),则统计由“1”中得到的二进制数的位数,设为N;如果主机数大于254,则 N>8,也就是说主机地址将超过8位;3.最后,使用255.255.255.255将此类IP地址的主机地址位数全部置为1,然后按照“从后向前”的顺序将N位全部置为0,所得到的数值即为所求的子网掩码值。 例如:需将B类IP地址167.194.0.0划分成若干个子网,每个子网内有主机500台:1)(500)10=()2;2)此二进制的位数是9,则N=9;3)将该B类地址的子网掩码255. 255.0.0的主机地址全部置 1,得到255.255.255.255。 然后再从后向前将后9位置0,可得. ..即255.255.254.0。 这组数值就是划分成主机为500台的B类IP地址167.194.0.0的子网掩码。
oracle数据库的后台进程有哪些
DBWR进程:该进程执行将缓冲区写入数据文件,是负责缓冲存储区管理的一个ORACLE后台进程。 当缓冲区中的一缓冲区被修改,它被标志为“弄脏”,DBWR的主要任务是将“弄脏”的缓冲区写入磁盘,使缓冲区保持“干净”。 由于缓冲存储区的缓冲区填入数据库或被用户进程弄脏,未用的缓冲区的数目减少。 当未用的缓冲区下降到很少,以致用户进程要从磁盘读入块到内存存储区时无法找到未用的缓冲区时,DBWR将管理缓冲存储区,使用户进程总可得到未用的缓冲区。 ORACLE采用LRU(LEAST RECENTLY USED)算法(最近最少使用算法)保持内存中的数据块是最近使用的,使I/O最小。 在下列情况预示DBWR 要将弄脏的缓冲区写入磁盘:当一个服务器进程将一缓冲区移入“弄脏”表,该弄脏表达到临界长度时,该服务进程将通知DBWR进行写。 该临界长度是为参数DB-BLOCK-WRITE-BATCH的值的一半。 当一个服务器进程在LRU表中查找DB-BLOCK-MAX-SCAN-CNT缓冲区时,没有查到未用的缓冲区,它停止查找并通知DBWR进行写。 出现超时(每次3秒),DBWR 将通知本身。 当出现检查点时,LGWR将通知DBWR.在前两种情况下,DBWR将弄脏表中的块写入磁盘,每次可写的块数由初始化参数DB-BLOCK- WRITE-BATCH所指定。 如果弄脏表中没有该参数指定块数的缓冲区,DBWR从LUR表中查找另外一个弄脏缓冲区。 如果DBWR在三秒内未活动,则出现超时。 在这种情况下DBWR对LRU表查找指定数目的缓冲区,将所找到任何弄脏缓冲区写入磁盘。 每当出现超时,DBWR查找一个新的缓冲区组。 每次由DBWR查找的缓冲区的数目是为寝化参数DB-BLOCK- WRITE-BATCH的值的二倍。 如果数据库空运转,DBWR最终将全部缓冲区存储区写入磁盘。 在出现检查点时,LGWR指定一修改缓冲区表必须写入到磁盘。 DBWR将指定的缓冲区写入磁盘。 在有些平台上,一个实例可有多个DBWR.在这样的实例中,一些块可写入一磁盘,另一些块可写入其它磁盘。 参数DB-WRITERS控制DBWR进程个数。 LGWR进程:该进程将日志缓冲区写入磁盘上的一个日志文件,它是负责管理日志缓冲区的一个ORACLE后台进程。 LGWR进程将自上次写入磁盘以来的全部日志项输出,LGWR输出:当用户进程提交一事务时写入一个提交记录。 每三秒将日志缓冲区输出。 当日志缓冲区的1/3已满时将日志缓冲区输出。 当DBWR将修改缓冲区写入磁盘时则将日志缓冲区输出。 LGWR进程同步地写入到活动的镜象在线日志文件组。 如果组中一个文件被删除或不可用,LGWR 可继续地写入该组的其它文件。 日志缓冲区是一个循环缓冲区。 当LGWR将日志缓冲区的日志项写入日志文件后,服务器进程可将新的日志项写入到该日志缓冲区。 LGWR 通常写得很快,可确保日志缓冲区总有空间可写入新的日志项。 注意:有时候当需要更多的日志缓冲区时,LWGR在一个事务提交前就将日志项写出,而这些日志项仅当在以后事务提交后才永久化。 ORACLE使用快速提交机制,当用户发出COMMIT语句时,一个COMMIT记录立即放入日志缓冲区,但相应的数据缓冲区改变是被延迟,直到在更有效时才将它们写入数据文件。 当一事务提交时,被赋给一个系统修改号(SCN),它同事务日志项一起记录在日志中。 由于SCN记录在日志中,以致在并行服务器选项配置情况下,恢复操作可以同步。 CKPT进程:该进程在检查点出现时,对全部数据文件的标题进行修改,指示该检查点。 在通常的情况下,该任务由LGWR执行。 然而,如果检查点明显地降低系统性能时,可使CKPT进程运行,将原来由LGWR进程执行的检查点的工作分离出来,由 CKPT进程实现。 对于许多应用情况,CKPT进程是不必要的。 只有当数据库有许多数据文件,LGWR在检查点时明显地降低性能才使CKPT运行。 CKPT进程不将块写入磁盘,该工作是由DBWR完成的。 初始化参数CHECKPOINT-PROCESS控制CKPT进程的使能或使不能。 缺省时为FALSE,即为使不能。 SMON进程:该进程实例启动时执行实例恢复,还负责清理不再使用的临时段。 在具有并行服务器选项的环境下,SMON对有故障CPU或实例进行实例恢复。 SMON进程有规律地被呼醒,检查是否需要,或者其它进程发现需要时可以被调用。 PMON进程:该进程在用户进程出现故障时执行进程恢复,负责清理内存储区和释放该进程所使用的资源。 例:它要重置活动事务表的状态,释放封锁,将该故障的进程的ID从活动进程表中移去。 PMON还周期地检查调度进程(DISPATCHER)和服务器进程的状态,如果已死,则重新启动(不包括有意删除的进程)。 PMON有规律地被呼醒,检查是否需要,或者其它进程发现需要时可以被调用。 RECO进程:该进程是在具有分布式选项时所使用的一个进程,自动地解决在分布式事务中的故障。 一个结点RECO后台进程自动地连接到包含有悬而未决的分布式事务的其它数据库中,RECO自动地解决所有的悬而不决的事务。 任何相应于已处理的悬而不决的事务的行将从每一个数据库的悬挂事务表中删去。 当一数据库服务器的RECO后台进程试图建立同一远程服务器的通信,如果远程服务器是不可用或者网络连接不能建立时,RECO自动地在一个时间间隔之后再次连接。 RECO后台进程仅当在允许分布式事务的系统中出现,而且DISTRIBUTED ?C transactionS参数是大于进程:该进程将已填满的在线日志文件拷贝到指定的存储设备。 当日志是为ARCHIVELOG使用方式、并可自动地归档时ARCH进程才存在。 LCKn进程:是在具有并行服务器选件环境下使用,可多至10个进程(LCK0,LCK1……,LCK9),用于实例间的封锁。 Dnnn进程(调度进程):该进程允许用户进程共享有限的服务器进程(SERVER PROCESS)。 没有调度进程时,每个用户进程需要一个专用服务进程(DEDICATEDSERVER PROCESS)。 对于多线索服务器(MULTI-THREADED SERVER)可支持多个用户进程。 如果在系统中具有大量用户,多线索服务器可支持大量用户,尤其在客户_服务器环境中。 在一个数据库实例中可建立多个调度进程。 对每种网络协议至少建立一个调度进程。 数据库管理员根据操作系统中每个进程可连接数目的限制决定启动的调度程序的最优数,在实例运行时可增加或删除调度进程。 多线索服务器需要SQL*NET版本2或更后的版本。 在多线索服务器的配置下,一个网络接收器进程等待客户应用连接请求,并将每一个发送到一个调度进程。 如果不能将客户应用连接到一调度进程时,网络接收器进程将启动一个专用服务器进程。 该网络接收器进程不是ORACLE实例的组成部分,它是处理与ORACLE有关的网络进程的组成部分。 在实例启动时,该网络接收器被打开,为用户连接到ORACLE建立一通信路径,然后每一个调度进程把连接请求的调度进程的地址给予于它的接收器。 当一个用户进程作连接请求时,网络接收器进程分析请求并决定该用户是否可使用一调度进程。 如果是,该网络接收器进程返回该调度进程的地址,之后用户进程直接连接到该调度进程。 有些用户进程不能调度进程通信(如果使用SQL*NET以前的版本的用户),网络接收器进程不能将如此用户连接到一调度进程。 在这种情况下,网络接收器建立一个专用服务器进程,建立一种合适的连接.即主要的有:DBWR,LGWR,SMON 其他后台进程有PMON,CKPT等














发表评论