Linux内核非常强大,具有可扩展性,可以基于各种硬件和外部设备进行优化。这也是为什么很多前沿应用如智能家居,智能交通,人工智能等都使用Linux内核来实现其功能的原因。它有着强大的社区背景,以及极其完善的开发工具链和文档。为了进一步了解Linux内核,我们可以尝试剖析Linux内核来深入了解它的内部实现。
Linux内核的剖析主要分为三个步骤:分析,调试和模拟。首先是分析,需要对Linux内核进行大量的阅读和源码分析,以找出它的重点和关键部件。其次是调试,可以使用gdb调试器来单步调试Linux内核,查看对应函数的内部调用及变量值。最后是模拟,可以使用QEMU来复现内核中某个特定函数的执行过程,从而充分利用模拟环境研究内核的工作方式。
此外,Linux内核的剖析还可以通过添加新函数或修改现有的函数,以测试Linux的各种特性,包括设备管理,存储协议,网络协议,以及CPU的SMP管理和调度。在添加新的函数后,可以应用于新的计算机处理单元,或者是用于实现更高效率的计算机处理单元。
因此,探秘Linux内核可以帮助我们更好地理解它在底层处理器等方面的强大功能,从而实现更有效的应用。对于知乎专家来说,探秘Linux内核剖析可以帮助我们深入了解Linux内核,从而提升我们技术能力,用以实现更复杂的高性能应用程序。知乎专家无不力荐这种深入探秘Linux内核的剖析方式。
#include int main() {printf("探秘Linux内核剖析,知乎专家力荐!\n");return 0;}
香港服务器首选树叶云,2H2G首月10元开通。树叶云(shuyeidc.com)提供简单好用,价格厚道的香港/美国云 服务器 和独立服务器。IDC+ISP+ICP资质。ARIN和APNIC会员。成熟技术团队15年行业经验。
linux系统的内核是基于什么构建的

反正不是基于unix只是属于一个类最大程度的兼容unixLinux之父李纳斯.托沃兹(Linus Torvalds)在编写内核时没有参看unix的代码这些资料网上都可以找到
linux系统内核是什么?
Linux的出现,最早开始于一位名叫Linus Torvalds的计算机业余爱好者,当时他是芬兰赫尔辛基大学的学生。 他的目的是想设计一个代替Minix(是由一位名叫andrew Tannebaum的计算机教授编写的一个操作系统示教程序)的操作系统,这个操作系统可用于386、486或奔腾处理器的个人计算机上,并且具有Unix操作系统的全部功能,因而开始了Linux雏形的设计。
linux的内核运行原理是怎么样的呢?如何从开机,到加载内核镜像到内存?
当PC启动时,Intel系列的CPU首先进入的是实模式,并开始执行位于地址0xFFFF0处的代码,也就是ROM-BIOS起始位置的代码。 BIOS先进行一系列的系统自检,然后初始化位于地址0的中断向量表。 最后BIOS将启动盘的第一个扇区装入到0x7C00,并开始执行此处的代码。 这就是对内核初始化过程的一个最简单的描述。 最初,linux核心的最开始部分是用8086汇编语言编写的。 当开始运行时,核心将自己装入到绝对地址0x,再将其后的2k字节装入到地址0x处,最后将核心的其余部分装入到0x。 当系统装入时,会显示Loading...信息。 装入完成后,控制转向另一个实模式下的汇编语言代码boot/Setup.S。 Setup部分首先设置一些系统的硬件设备,然后将核心从0x处移至0x1000处。 这时系统转入保护模式,开始执行位于0x1000处的代码。 接下来是内核的解压缩。 0x1000处的代码来自于文件Boot/head.S,它用来初始化寄存器和调用decompress_kernel( )程序。 decompress_kernel( )程序由Boot/inflate.c,Boot/unzip.c和Boot../misc.c组成。 解压缩后的数据被装入到了0x处,这也是linux不能在内存小于2M的环境下运行的主要原因。 解压后的代码在0x处开始执行,紧接着所有的32位的设置都将完成: IDT、GDT和LDT将被装入,处理器初始化完毕,设置好内存页面,最终调用start_kernel过程。 这大概是整个内核中最为复杂的部分。 [系统开始运行]linux kernel 最早的C代码从汇编标记startup_32开始执行startup_32:start_kernellock_kerneltrap_initinit_IRQsched_initsoftirq_inittime_initconsole_init#ifdef CONFIG_MODULESinit_modules#endifkmem_cache_initsticalibrate_delaymem_initkmem_cache_sizes_initpgtable_cache_initFORk_initproc_caches_initvfs_caches_initbuffer_initpage_cache_initsignals_init#ifdef CONFIG_PROC_FSproc_root_init#endif#if defined(CONFIG_SYSVIPC)ipc_init#endifcheck_bugssmp_initrest_initkernel_threadunlock_kernelcpu_idle・startup_32 [arch/i386/kernel/head.S]・start_kernel [init/main.c]・lock_kernel [include/asm/smplock.h]・trap_init [arch/i386/kernel/traps.c]・init_IRQ [arch/i386/kernel/i8259.c]・sched_init [kernel/sched.c]・softirq_init [kernel/softirq.c]・time_init [arch/i386/kernel/time.c]・console_init [drivers/char/tty_io.c]・init_modules [kernel/module.c]・kmem_cache_init [mm/slab.c]・sti [include/asm/system.h]・calibrate_delay [init/main.c]・mem_init [arch/i386/mm/init.c]・kmem_cache_sizes_init [mm/slab.c]・pgtable_cache_init [arch/i386/mm/init.c]・fork_init [kernel/fork.c]・proc_caches_init・vfs_caches_init [fs/dcache.c]・buffer_init [fs/buffer.c]・page_cache_init [mm/filemap.c]・signals_init [kernel/signal.c]・proc_root_init [fs/proc/root.c]・ipc_init [ipc/util.c]・check_bugs [include/asm/bugs.h]・smp_init [init/main.c]・rest_init・kernel_thread [arch/i386/kernel/process.c]・unlock_kernel [include/asm/smplock.h]・cpu_idle [arch/i386/kernel/process.c]start_kernel( )程序用于初始化系统内核的各个部分,包括:*设置内存边界,调用paging_init( )初始化内存页面。 *初始化陷阱,中断通道和调度。 *对命令行进行语法分析。 *初始化设备驱动程序和磁盘缓冲区。 *校对延迟循环。 最后的functionrest_init 作了以下工作:・开辟内核线程init・调用unlock_kernel・建立内核运行的cpu_idle环, 如果没有调度,就一直死循环实际上start_kernel永远不能终止.它会无穷地循环执行cpu_idle.最后,系统核心转向move_to_user_mode( ),以便创建初始化进程(init)。 此后,进程0开始进入无限循环。 初始化进程开始执行/etc/init、/bin/init 或/sbin /init中的一个之后,系统内核就不再对程序进行直接控制了。 之后系统内核的作用主要是给进程提供系统调用,以及提供异步中断事件的处理。 多任务机制已经建立起来,并开始处理多个用户的登录和fork( )创建的进程。 [init]init是第一个进程,或者说内核线程initlock_kerneldo_basic_setupmtrr_initsysctl_initpci_initsock_initstart_context_threaddo_init_calls(*call())-> kswapd_initprepare_Namespacefree_initmemunlock_kernelexecve[目录]--------------------------------------------------------------------------------启动步骤系统引导:涉及的文件./arch/$ARCH/boot/bootsect.s./arch/$ARCH/boot/.S这个程序是linux kernel的第一个程序,包括了linux自己的bootstrap程序,但是在说明这个程序前,必须先说明一般IBM PC开机时的动作(此处的开机是指打开PC的电源):一般PC在电源一开时,是由内存中地址FFFF:0000开始执行(这个地址一定在ROM BIOS中,ROM BIOS一般是在FEOOOh到FFFFFh中),而此处的内容则是一个jump指令,jump到另一个位於ROM BIOS中的位置,开始执行一系列的动作,包括了检查RAM,keyboard,显示器,软硬磁盘等等,这些动作是由系统测试代码(system test code)来执行的,随着制作BIOS厂商的不同而会有些许差异,但都是大同小异,读者可自行观察自家机器开机时,萤幕上所显示的检查讯息。 紧接着系统测试码之后,控制权会转移给ROM中的启动程序(ROM bootstrap routine),这个程序会将磁盘上的第零轨第零扇区读入内存中(这就是一般所谓的boot sector,如果你曾接触过电脑病毒,就大概听过它的大名),至於被读到内存的哪里呢? --绝对位置07C0:0000(即07C00h处),这是IBM系列PC的特性。 而位在linux开机磁盘的boot sector上的正是linux的bootsect程序,也就是说,bootsect是第一个被读入内存中并执行的程序。 现在,我们可以开始来看看到底bootsect做了什么。 第一步首先,bootsect将它自己从被ROM BIOS载入的绝对地址0x7C00处搬到0x处,然后利用一个jmpi(jump indirectly)的指令,跳到新位置的jmpi的下一行去执行,第二步接着,将其他segment registers包括DS,ES,SS都指向0x9000这个位置,与CS看齐。 另外将SP及DX指向一任意位移地址( offset ),这个地址等一下会用来存放磁盘参数表(disk para- meter table )第三步接着利用BIOS中断服务int 13h的第0号功能,重置磁盘控制器,使得刚才的设定发挥功能。 第四步完成重置磁盘控制器之后,bootsect就从磁盘上读入紧邻着bootsect的setup程序,也就是setup.S,此读入动作是利用BIOS中断服务int 13h的第2号功能。 setup的image将会读入至程序所指定的内存绝对地址0x处,也就是在内存中紧邻着bootsect 所在的位置。 待setup的image读入内存后,利用BIOS中断服务int 13h的第8号功能读取目前磁盘的参数。 第五步再来,就要读入真正linux的kernel了,也就是你可以在linux的根目录下看到的vmlinuz 。 在读入前,将会先呼叫BIOS中断服务int 10h 的第3号功能,读取游标位置,之后再呼叫BIOS 中断服务int 10h的第13h号功能,在萤幕上输出字串Loading,这个字串在boot linux时都会首先被看到,相信大家应该觉得很眼熟吧。 第六步接下来做的事是检查root device,之后就仿照一开始的方法,利用indirectjump 跳至刚刚已读入的setup部份第七步setup.S完成在实模式下版本检查,并将硬盘,鼠标,内存参数写入到 INITSEG中,并负责进入保护模式。 第八步操作系统的初始化。
发表评论